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Abstract

Multibody dynamics analysis is a powerful tool for the comprehensive simulation
of the dynamic response of various flexible aerospace systems that are important to the
Air Force. Systems of arbitrary topology and complexity can be readily modeled; they
include both aircrafts and spacecrafts. In present formulations, the joints connecting the
various flexible bodies are not modeled per se. Rather, the effect of joints, i.e. the
constraints they impose on the behavior of the entire system are modeled through a set of
kinematic constraints; the piece of hardware that actually constitutes the joint is not
modeled.

As multibody formulations become more widely accepted, the need to model a
wider array of phenomena increases. In particular, it is necessary to develop
methodologies for the analysis of unilateral contact conditions in joints and of the
resulting normal and friction forces. The modeling of such effects is of unique
importance to the Air Force. For instance, wear and free-play in control surface joints can
lead to aeroelastic instabilities or limit cycle oscillations. The accurate modeling of joint
frictional behavior is central to the design of precision space structures. Indeed, friction
forces are used as a mechanism for damping out undesirable vibrations, but can also lead
to locking during the deployment of space structures, or to the inaccurate positioning of
precision optical components.

For realistic simulations, the actual piece of hardware and contact mechanics
should be modeled more precisely. This involves a host of phenomena such as: contact
kinematics, nonlinear normal contact forces between inelastic bodies, tangential loading,
and sliding contact. Furthermore, the high level of nonlinearity associated with a number
of these phenomena implies challenging numerical issues. Although friction forces can be
readily evaluated from Coulomb friction laws, the resulting accuracy is questionable.
Sticking and slipping can co-exist in different parts of the contact area, a phenomenon
known as micro-slip. The actual relationship between the friction force, the normal
pressure and the slip motion is not well understood. In reality, the friction force is known
to depend on a host of other factors including the normal load, the instantaneous slip
velocity and displacement, the history of the motion, surface roughness and wear,
environmental factors such as temperature. A further complication is that the accurate
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evaluation of the normal or pressure forces across the slip plane requires modeling of
system dynamics in both normal and slip planes. Hence, joint behavior and system
dynamics are intimately coupled. Finally, friction forces depend on the motion in a highly
nonlinear way, complicating analytical and numerical solution procedures. Numerous
models of friction have been developed and presented in the literature, each addressing
some of the above issues. Ultimately, overall structural damping of complex jointed
structures should be predicted from the frictional behavior of individual joints. These
effects are seldom addressed by standard formulations and commercial packages,
although they can significantly impact system dynamics.

Statement of Objectives
The objective of this research is to develop, implement and validate models that

capture the behavior of joints in a realistic manner. These models will be presented
within the framework of a finite element based, nonlinear multibody dynamics
formulation that ensure unconditional nonlinear stability of the computation for complex
systems of arbitrary topology. The resulting piece of software will be validated and
realistic cases of relevance to the Air Force will be treated. Applications will focus on the
deployment and vibration of precision space structures.

The proposed approach can be divided into three parts. The first part deals with
joint configuration. This purely kinematic part of the problem deals with the description
of the configuration of the joint and the evaluation of the relative distance, q, between the
contacting bodies. The second part handles the contact conditions. In most cases, contact
at the joint will be of an intermittent nature. When contact occurs, normal contact forces
and friction forces will arise. This unilateral contact condition is readily expressed in
terms of the relative distance as q > 0. The enforcement of the unilateral contact condition
is a critical aspect of the computational procedure. Finally, the contact forces that arise at
the interface between contacting bodies must be evaluated according to a suitable
phenomenological law. A survey of the multibody literature reveals that very simple
models have been used thus far. For instance, the normal contact forces have been
modeled using a quadratic potential that corresponds to a linear force-approach
relationship, or the potential corresponding to the Hertz problem. The classical form of
Coulomb's law has been the basis for the modeling of frictional phenomena.

The thrust of this proposal is to increase the versatility and accuracy of unilateral
contact models in multibody systems. In order to achieve this goal, the three parts of the
model must be considerably expanded. The kinematics of the contacting bodies must be
generalized so as to allow a wide variety of joint configurations to be considered. In
particular, the kinematics of the various types of joints used in space structures should be
adequately modeled. The proper enforcement of the contact condition is central to the
numerical stability of the proposed procedure. Robust schemes must be used to treat this
challenging numerical problem. Finally, contact and frictional forces must be modeled in
an accurate manner. Note that the problem is highly coupled because contact and
frictional forces depend on the overall dynamic response of the system; joint behavior
cannot be investigated without modeling the entire system.

The advantage of the proposed approach is that the three parts of the problem can
be formulated and implemented independently. For instance, once a given friction law
has been implemented, it can be used for various types of joints and for systems of



arbitrary configurations. It is also possible to evaluate the performance of various friction
laws for a given joint configuration by comparing their predictions with experimental

measurements. Because the formulation is developed within the framework of finite

element based multibody dynamics, is can deal with systems of arbitrary configurations;
it is equally applicable to aircraft problems, such as free-play in control surfaces or
landing gears, or spacecraft problems such as satellite deployment or precision optical
structures.

The last objective of this effort is to investigate mechanism for energy transfer
and dissipation. While it is well understood that joint damping converts mechanical
energy to heat, it is less obvious that friction can serve as a catalyst for "energy
pumping," a phenomenon defined as the controlled one-way transfer of vibrational
energy to a passive nonlinear sink, where the energy localizes and dissipates over time.
Simple models will be used to demonstrate this phenomenon, and parameters affecting
energy transfer and dissipation will be identified

Achievements
Over the period of the grant, research has focused on two areas of the problem:

the development and implementation of joints with new kinematic configurations and
energy transfer phenomena in the presence of frictional interfaces.

New joint configurations
One of the thrusts of this research is to increase the versatility and accuracy of

unilateral contact models in multibody systems. In order to achieve this goal, the
kinematics of the contacting bodies must be generalized so as to allow a wide variety of
joint configurations to be considered. In particular, the kinematics of the various types of
joints used in space structures should be adequately modeled. A large number of
configurations can be treated with the following joints: backlash effects in relative
rotation and displacements elements, planar and spherical joints with clearance, the
spatial clearance joint, and planar and spatial contact joints.

These various types of joints enable the modeling of a variety of kinematic
configurations that encountered in aerospace systems. Simple problems like backlash can
be readily treated, clearance problem in planar and spherical joints are specifically
addressed, and finally, the contact between rigid bodies of arbitrary external shape
enables the analysis of general, three-dimensional problems. For all joints, normal and
tangential forces will develop at the contact point. Simulations were run with the various
contact and frictional models developed during the first two years of this effort.

Accurate Simulation of Frictional Systems
Friction is a natural phenomenon that occurs in many engineering systems.

Although the concept of friction is easily understood, it is notoriously difficult to model
and simulate. Many friction models contain a variety of nonlinear features such as
discontinuities, hysteresis, internal dynamics, and other complications. These properties
cause the friction models to be numerically stiff and therefore computationally
cumbersome for simulation purposes. Simple models of friction, derived from the
Coulomb friction paradigm, suggest that the friction force changes "discontinuously" as
the direction of interfacial slip changes. Two main techniques have been used to deal



with the discontinuity. The first approach "smoothes" or "regularizes" the friction law in
the vicinity of the discontinuity. Thus the discontinuous law is replaced with a "steep"

albeit smooth friction law. While this partially alleviates the numerical stiffness problem,

it introduces approximations that are not based in the physics of interfacial contact. The

second approach used for the simulation of discontinuous frictional systems is to utilize a
"switching strategy," also known as an event-driven strategy. In this approach, the
system is simulated until the slip velocity across any friction interface changes sign. At
the so-called switch times, one checks to determine whether the maximum-available
friction force is sufficient to prevent slip from occurring. Depending on the outcome of
this check, one either continues to integrate the "slipping equations," or one switches to
the use of "sticking equations," which model the system with a stuck interface. There are
two problems with this approach. First, the accuracy of the method hinges on accurate
determination of the switching time. Second, the number of models that needs to be
developed grows with the number of frictional interfaces in the structure.

Recently, advanced friction models have been proposed that represent a frictional
interface in both the microslip and macroslip regimes. One such model, termed the LuGre
friction model, is based on a bristle interpretation of the contacting surfaces. Microslip is
captured by the deformation of the bristles prior to slip. The advantages of this model
must be weighed against the computational difficulties during simulation. In particular,
because the interfacial stiffness is much larger than the stiffness of the structural
members themselves, time integration routines must be evaluated for accuracy and
stability.

The efficient simulation of LuGre friction models was investigated in [2,3]. First,
dynamics of the LuGre dynamics were studied analytically, to investigate the underlying
source of the numerical stiffness and to determine the dependence of the stiffness severity
on the governing nondimensional parameters. Next, an extensive simulation study was
conducted to determine which integration methods worked best. Both explicit and
implicit time-integration algorithms were considered. In addition, time-step adaptation
schemes were developed that could choose appropriate step size in various sliding
regimes.

Energy Transfer through Frictional Interfaces
It is well known that dry friction accounts for as much as 90% of the total

damping of a built-up structure. The energy loss occurs primarily through the
transformation of vibratory energy (kinetic and potential) into heat. Less understood is
the role of friction in the transfer of energy from one substructure to another, or from one
vibratory mode to another. As part of the AFOSR project, two different mechanisms for
energy transfer were investigated.

Structure-to-ground connection. In the case of a structure-to-ground
connection, the frictional interface can act as a catalyst for pumping energy from low-
frequency modes to high-frequency modes. Specifically, it is possible for stick-slip
motion at the frictional interface to excite and transfer energy to a high-frequency mode,
where it may be dissipated more rapidly. In [3,4] this phenomenon was studied using a
three-degree-of-freedom (3DOF) system. It was found that favorable tuning conditions
exist where the energy transfer is maximized.



Structure-to-structure connection. In the case of a structure-to-structure connection,
friction still plays a vital role in the dissipation of energy, but the energy pumping
scenario is of less importance. Instead, energy dissipation is best when the natural
frequencies of the connected substructures are dissimilar. When natural frequencies
coincide, sliding across the frictional interface is discouraged, resulting in relatively poor
damping. Using controllability concepts, it is possible to predict the friction damping
performance based on the controllability of the structure based on joint forces. Such a
metric provides a valuable tool in comparing different structural designs from an energy
dissipation standpoint.

Publications
The work performed under this grant has been summarized in a number of papers

that are appended to this report.
1. Bauchau, O.A. and Ju, C.K.: "Modeling Friction Phenomena in Flexible

Multibody Dynamics." To appear in the special edition of the Computer Methods
in Applied Mechanics and Engineering Journal on Computational Multibody
Dynamics.

2. Do, N., Ferri, A.A., and Bauchau, O.A., 2005 "Efficient Simulation of a Dynamic
System with LuGre Friction," 2005 ASME International Design Engineering
Technical Conferences & Computers and Information In Engineering Conference,
Long Beach, California, September 24-28, 2005. Submitted to the ASME Journal
of Computational and Nonlinear Dynamics.

3. Do, N., 2005, "Modeling of Frictional Contact Conditions in Structures," School
of Mechanical Engineering, Georgia Tech, Atlanta, GA, 30332-0405, August,
2005.

4. Do, N., and Ferri, A.A., "Energy Transfer and Dissipation in a Three-Degree-of-
Freedom System with Stribeck Friction," Proceedings of the 2005 ASME IMECE
Conference, Orlando, FL, Nov. 5-11. (In preparation for journal submission.)
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Multibody Dynamics
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Abstract

The dynamic response of flexible systems of arbitrary topology and complexity are

now readily modeled using multibody dynamics analysis concepts. In most formu-

lations, the joints connecting the flexible bodies of the system are not modeled per

se: only the effect of joints is modeled through a set of kinematic constraints. This

paper focuses on the development of methodologies for the analysis of unilateral

contact conditions in joints and of the resulting normal and friction forces. This in-

volves a host of phenomena such as: contact kinematics, contact conditions, and the

modeling of the normal and tangential contact forces. Furthermore, the high level

of nonlinearity associated with a number of these phenomena implies challenging

numerical issues. Although friction forces can be readily evaluated using Coulomb

friction law, the resulting accuracy is questionable: sticking and slipping can co-exist

in different parts of the contact area, a phenomenon known as micro-slip. Numerous
models of friction have been developed and presented in the literature; application

of the LuGre model will be discussed in this paper.

Key words: Multibody systems, Friction phenomena, LuGre model

1 Introduction

Multibody dynamics analysis is a powerful tool for the comprehensive simulation of the

dynamic response of flexible systems of arbitrary topology and complexity. In present for-

mulations, the joints connecting the various flexible bodies are rarely modeled per se. Rather,

the effect of joints, i.e. the constraints they impose on the behavior of the entire system are

modeled through a set of kinematic constraints; the piece of hardware that actually constitutes

the joint is not modeled.

As multibody formulations become more widely accepted, the need to model a wider array of

phenomena increases. In particular, it is necessary to develop methodologies for the analysis
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of unilateral contact conditions in joints and of the resulting normal and friction forces. For
realistic simulations, the actual piece of hardware and contact mechanics should be modeled

more precisely. This involves a host of phenomena such as: contact kinematics, nonlinear

normal contact forces, tangential loading, and sliding contact. Furthermore, the high level

of nonlinearity associated with a number of these phenomena implies challenging numerical
issues. Although friction forces can be readily evaluated from Coulomb friction laws, the
resulting accuracy is questionable. Sticking and slipping can co-exist in different parts of the
contact area, a phenomenon known as micro-slip. The actual relationship between the friction
force, the normal pressure and the slip motion is not well understood. A further complication
is that the accurate evaluation of the normal or pressure forces across the slip plane requires
modeling of system dynamics in both normal and slip planes. Hence, joint behavior and
system dynamics are intimately coupled. Finally, friction forces depend on the motion in a
highly nonlinear way, complicating analytical and numerical solution procedures. Numerous
models of friction have been developed and presented in the literature, each addressing some
of the above issues.

This paper focuses on the development, implementation and validation of models that cap-
ture the behavior of joints in a realistic manner. These models will be presented within the
framework of a finite element based, nonlinear multibody dynamics formulations that en-
sure unconditional nonlinear stability of the computation for complex systems of arbitrary
topology. The proposed approach can be divided into three parts. First, the modeling of the
joint configuration: this purely kinematic part of the problem deals with the description of
the configuration of the joint and the evaluation of the relative distance, q, and the relative
tangential velocity, v, between the contacting bodies. Second, the enforcement of the con-
tact conditions: in most cases, contact at the joint will be of an intermittent nature. This
unilateral contact condition is readily expressed in terms of the relative distance as q > 0.
The enforcement of the unilateral contact condition is a critical aspect of the computational
procedure. Finally, the evaluation of the contact forces, when contact occurs: this last part
of the problems deals with the computation of the normal and tangential forces that arise
at the interface between contacting bodies. The contact forces must be computed based on
suitable phenomenological laws. A survey of the multibody literature reveals that very simple
models have been used thus far. For instance, the normal contact forces have been modeled
using a quadratic potential that corresponds to a linear force-approach relationship, or the
potential corresponding to Hertz's problem [1]. The classical form of Coulomb's law has been
the basis for the modeling of frictional phenomena [2].

Increasing the versatility and accuracy of unilateral contact models in multibody systems is
the focus of this paper. To achieve this goal, the three parts of the model must be consider-
ably expanded. The kinematics of the contacting bodies must be generalized so as to allow
a variety of joint configurations to be considered. The proper enforcement of the contact
condition is central to the numerical stability of the proposed procedure. Robust schemes
must be used to treat this challenging numerical problem. Finally, contact and frictional
forces must be modeled in an accurate manner. Note that the problem is highly coupled
because contact and frictional forces depend on the overall dynamic response of the system;
joint behavior cannot be investigated without modeling the entire system.
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The advantage of the proposed approach is that the three parts of the problem can be for-
mulated and implemented independently. For instance, once a given friction law has been
implemented, it can be used for various types of joints and for systems of arbitrary configura-
tions. It is also possible to evaluate the performance of various friction laws for a given joint
configuration by comparing their predictions with experimental measurements. Because the
formulation is developed within the framework of finite element based multibody dynam-
ics, it can deal with systems of arbitrary configurations. This paper is laid out as follows:
section 2 presents the kinematic description of two joints with clearance and the unilateral
contact condition associated with the clearance is discussed in section 3. The modeling of the
frictional process is presented in sections 4 and 5, and numerical examples of the proposed
procedure appear in section 6.

2 Kinematic Description of Joints with Clearance

The kinematic description of joints with clearance will be divided into two- and three-
dimensional models. For two-dimensional problems, a revolute joint with clearance, called the
planar clearance joint, is viewed as a planar joint with a unilateral constraint. The clearance,
or distance between the inner and outer races, can be evaluated from the kinematic variables
associated with the planar joint. A similar approach can be applied to spherical joints with
clearance. In the three-dimensional case, a spatial clearance joint is developed; the clearance
can still be related to the kinematic variables of the joint, although this relationship is more
complex.

2.1 The Planar Clearance Joint

A revolute joint with clearance can be modeled as a planar joint with the appropriate addition
of a unilateral contact condition. Consider the planar joint depicted in fig. 1; the outer
and inner races of the joint are modeled as bodies K and L, respectively. In the reference
configuration, the position of body K is defined by its position vector uo and its orientation
is determined by a body attached orthonormal basis 10k = El o, 030 , with e•0 normal
to the plane of joint and the over bar indicates a unit vector. The radius of the outer race
is denoted p . In the deformed configuration, body K undergoes a displacement uk and its
orientation is defined by an orthonormal basis Bk = (E, E, 9). The kinematic variables
associated with body L, which represents the inner race of the revolute joint, are defined in
a similar manner. The planar joint is associated with the following constraint conditions

Cl= "el3=0; 2 =e2-e3 =0; C3 = e3T (o+U0)=0, (1)

where uto = 1 - % and u = U_ - uk. Kinematic condition C3 = 0 implies that body L
remains in the plane normal to e3k. Conditions C1 = C2 = 0 imply that et3 remains normal to
that same plane. The implementation of the holonomic constraints, eqs. (1), is discussed in
ref. [31.
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Contact may occur between the inner and outer races of the joint. As shown in fig. 1, the
candidate contact points [2] are readily found as Zk = U + uk + pki and Ze = y, + ut + pf,
where i! = (u_ + Iu)/ IuO + R11 is the unit vector joining the centers of the two races. The
relative distance between the races then becomes

q = n TW, _ Zl) = PI: _ P, _ I11• +-RI. (2)

The virtual work done by the normal contact force is 6W = fnTj(zk _- Z) = fnf1Tj(uk -

uk) = fnfq, where ff is the magnitude of the normal contact force. Expanding this result
yields

UW= -I . (3)

The present formulation is developed within the framework of the time discontinuous Galerkin
procedure [4] that provides algorithms for the integration of multibody systems featuring un-
conditional nonlinear stability [3]. In this approach, the discretization of the system is based
on its configurations at the beginning and end times of a typical time step, denoted ti and
tf, respectively, and the subscripts (')i and (-)f denote the values of a quantity at ti and tf,
respectively. In addition, the subscript (.)j indicates quantities at time tj, immediately after
the initial discontinuity. The normal contact force is taken to be constant over a time step
and is discretized as

_a 1 (4)

where u,, = (-f + ui)/2 , Rnm = 2(u + _,m)/(JIRO + If 11 + iu_0 + uRil), and fJ the constant
magnitude of the contact force over the time step. Note that the discretization of the contact
force does not involve discretized quantities at time tj; this contrasts with the discretization
of the elastic forces in the flexible elements of the model that does involve the discretized
quantities at time tj [3], resulting in a linear in time approximation for these forces. For
contact problems, it was found to be preferable to use constant in time approximations for
the normal and tangential components of the contact force. It is readily verified that this
discretization implies that the work done by the normal contact force over a time step is
AW = fn(qf - qi)-

Next, the friction forces will be evaluated. The time derivatives of the candidate contact

point positions are _ = + pDkii and Z= i + peZfY, where () denotes a derivative
with respect to time, and wk and we are the angular velocity vectors of bodies K and L,

respectively. The relative velocity is Vy = and the relative tangential velocity,k
then becomes

V, = PVr, (5)

where P = U - hh is the operator that projects the relative velocity vector onto the common
tangential plane at the point of contact; U is the identity matrix. The unit vector along the
relative tangential velocity is denoted E = VM/Vt, where V' = IIif I. The virtual work done

4



by the friction force is 6W = -ftTJ(Jz -_ 3Zk), where ft is the magnitude of the frictional
force. Expanding this expression yields

T T

Juk 6uk

6W =L k Ft- 6 ft PkiiE (6)

,3__' . U .~

The discretized friction force is selected as

em

ft. P= kilm (7)

where ft is the constant magnitude of the tangential contact force over the time step. The
work done by the friction forces over a single time step then becomes AW = -f'tAtVt,
provided the following definitions are made: Vt = (U - hmjnr)Y___, Em = Vm/V4t, andAtU, +pT t k-kT-k rk

AtV• = (uf - ui) + piTJ rl - p imr , where r and r t are the incremental rotations of
bodies K and L, respectively. If the friction is dissipative, ftAtVt > 0, and the above
discretization guarantees that AW = -fmtAtVt < 0, i.e. the discretization of the frictional
process is dissipative. Note that the formulation presented here is also valid for a spherical
joint with clearance.

2.2 The Spatial Clearance Joint

When the motion of the joint cannot be assumed to remain planar, a more complex, three-
dimensional configuration must be considered, such as that presented in fig. 2. The outer
race of the joint, denoted body K, is idealized as a cylinder of radius pk. The inner race,
denoted body L, is idealized as a thin disk of radius p1 . In the reference configuration, the
position of the outer race is defined by the position vector % of its center and its orientation
is determined by a body attached orthonormal basis B1k = (E o, E with k along

the axis of the cylinder. In the deformed configuration, the outer race center undergoes a
displacement uk and its orientation is defined by an orthonormal basis Bk = (E, k, k). The

kinematic variables associated with body L are defined in a similar manner, with 430 normal
to the plane of the disk. An orthonormal basis dk, dk, dk is now defined in the following
manner: d3 = ý3k is along the axis of the cylinder, dk makes an arbitrary angle € with k, and

d2 completes the basis

k 2=cosin+sin 2; =-sn +COS k; d3 (8)
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Consider now the plane tangent to the cylinder, defined by vectors d2 and d3, as depicted in
fig. 3. Point P, of position vector 1 + U1 + pk dk, belongs to this plane.

The relative distance q between disk L and this tangent plane is now evaluated. The candidate
contact points on the plane and disk are denoted Zk and Z1, respectively, see fig. 3. The
tangent to the disk at the candidate contact point must be in the plane of the disk and
parallel to the contacting plane, i.e. normal to i and d, respectively. The following basis is
now defined

; 43 = E_34 43, (9)h,

where hi = iWd/c '31. Clearly, de2 is parallel to the tangent at the candidate contact point, d•
points toward the candidate contact point, and d3 is normal to the plane of the disk. The
vector from point P to point Z' is

1]1 (10)
PZV = [(Yl -t)+pg _ [(,u_• + ukl) + pl •]=u_ + It + pl d _ pk •, 10

where Uo = !l - u_0, and u = U1 - uk. The relative distance q is found by projecting PZ__
along the unit vector -d, see fig. 3, to find

_dTp (uo+ U) -- pt d7 +k. (11)

As shown in fig. 3, the candidate contact point Zk is in the tangent plane, but not necessarily
on the cylindrical surface defining the outer race of the joint. The relative distance q defined
by eq. (11) is clearly a function of the angle ¢ that defines the location of the tangent
plane around the cylinder. The relative distance q between the cylinder and disk is found by
minimizing q with respect to the choice of 0, i.e. by setting dq/d¢ = 0 to find

T [p)tý l (O +_1)] = 0, (12)

where g, = E3T d. Note that for small angles gi = 0 and hi ,-t 1. The same result could be
obtained by imposing the condition that PZ' be orthogonal to d2. In summary, the relative
distance between the inner and outer races of the joint is

q= pk- pehl - dT(u_ + u), (13)

where hi = eId~!If = dT df, and angle q is implicitly defined by eq. (12).

If contact occurs, the virtual work done by the normal contact force is JW = fndFJT(Zk -

Z') = fndT3(qd) = fnfq, where fn is the magnitude of the normal contact force. Expand-
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ing this result yields

T T
uk kd

W = LO F_= n 60k fn (p'gi/hi) h1 _d-(go + y)

6U,7 - -df l (4

____ . -(peg/hi) hi

where hA = die3. The proposed discretization of the normal contact force, taken -to be
constant over a time step, is

~1.

En= f (pg.m/hlm) Aim. - d.(1 0 + 1m.)FF_= k (15)

-(p'glmlhlm) Aim

where dkm = (Odf + d1 2)/2, f3. (4 3f + e13i)/2, Aim = ikm3m, him (hif + hli)/2, g =

(gli + gli)/2, and fmn is the constant magnitude of the contact force over the time step. It
is readily verified that this discretization implies that the work done by the normal contact

force over a time step is AW = fmj(qf - qi).

Next, the friction forces will be evaluated. The time derivatives of the candidate contact

point positions are _ = + &kA and 7= + pLt~dt, where A = (g + 1k) + p'd, + qdk.

The relative velocity is V - and the relative tangential velocity, Vt, then becomes

Vt = PV17, (16)

where P = U -�~T is the operator that projects the relative velocity vector onto the

common tangential plane at the point of contact. The unit vector along the relative tangential

velocity is denoted E = vt/Vt, where Vt = 1Vt11. The virtual work done by the friction force

is 6W = -ftgT(sz_ -- Zk), where ft is the magnitude of the frictional force. Expanding
this expression yields

T . .T

,uk Suk

FW= ft t (17)
Jul Jut -e
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The discretized friction force is selected as

em

Elm = f (18)

-em

-P1(?mem

where fm the constant magnitude of the contact force over the time step. The work done
by the friction forces over a single time step then becomes AW = -fmAtVm, provided
the following definitions are made: Vt = (U - k dkT)Vr E =V' /Vt and AtVt

(_ - u&) + p rT _ -TATrk, where rk and rl are the incremental rotations of bodies K and L,
respectively. If the friction is dissipative, ftAtVt > 0, and the above discretization guarantees
that AW = -fmAtVt < 0, i.e. the discretization of the frictional process is dissipative. A
realistic model of a journal bearing with clearance is obtained by using two spatial clearance
joints connected by a rigid body, as depicted in fig. 4.

3 The Unilateral Contact Condition

The approaches to the modeling of unilateral contact conditions can be categorized in two
main classes. The first one considers impact to be an impulsive phenomenon of null dura-
tion [5,6,7]. The configuration of the system is "frozen" during the impact, and an appropriate
model is used to relate the states of the system immediately before and immediately after
the event. There are two alternative formulations of this theory: Newton's and Poisson's
methods. The first relates the relative normal velocities of the contacting bodies through the
use of an appropriate restitution coefficient. The second divides the impact into two phases.
At first, a compression phase brings the relative normal velocity of the bodies to zero through
the application of an impulse at the contact location. Then, an expansion phase applies an
impulse of opposite sign. The restitution coefficient relates the magnitudes of these two im-
pulses. Although these methods have been used with success for multibody contact/impact
simfilations, it is clear that their accuracy is inherently limited by the assumption of a van-
ishing impact duration.

In the second approach, contact/impact events are of finite duration, and the time history of
the resulting interaction forces is computed as a by-product of the simulation [8,9,10]. This
is achieved by introducing a suitable phenomenological law for the contact forces, usually
expressed as a function of the inter-penetration, or "approach," between the contacting
bodies. This approach is obtained at each instant of the simulation by solving a set of
kinematic equations that also express the minimum distance between the bodies when they
are not in contact, such as eqs. (2) or (13). When the bodies are in contact, the relationship
between the normal contact force and the approach is given by a constitutive law; various
laws can be used, but the classical solution of the static contact problem presented by
Hertz [1] has been implemented by many investigators. Energy dissipation can be added in
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an appropriate manner, as proposed by Hunt and Crossley [11]. If the normal contact forces
can be derived from a potential, V(q), the work done by these forces over a time step of the
simulation is AW = f,(qf - qj), as implied by the time discretizations proposed in eqs. (4)

and (15). The work done by these forces then becomes AW = V(qf) - V(qi), as expected,
if the normal forces are discretized as fn = (V(qf) - V(q1))/(qf - qi)

To be successful, the approach described above must be complemented with a time step
size selection procedure. When contact between the two bodies is about to take place, the
contact model will dictate the time step for the analysis. Let qo and q, be the relative distances
between the bodies for two consecutive time steps of size At0 and At 1 , respectively. To avoid
large penetration distances and the ensuing large normal contact forces at the first time
step after contact, the time step size will be selected so that the change in relative distance,
Aq = q, - q0 , be of the order of a user defined "characteristic penetration distance," ep. To

achieve this goal, the desired change in relative distance is selected as

1 if K<1
Aq = Ep i , (19)

I if > 1

where the quantity r, defined as r = (qi/ep)/qmin, measures the proximity to contact. The

desired time step size is then estimated as

*Aq
Atnew = -, (20)

Vm

where vm is the average relative velocity during the previous time step, Vm = 2 (qj-qo)/(Ato+
At 1). The following values were found to give good results for a wide range of problems:
qmin ---= 5 and a = 1.2.

It is important to note that the success of the present approach hinges upon two features of
the model: the local flexibility of the contacting bodies and time adaptivity. If the contact-
ing bodies are assumed to be rigid, the contact forces present a discontinuity at the instant
of contact that causes numerical problems during the simulation. Taking local flexibility
into account transforms the discontinuous force into a force with steep time gradients that
are then resolved using time adaptivity. This contrasts with "event driven" computational
strategies that first involve the determination of the exact time of contact, then a different
set of governing equations is used when the bodies are in contact. If several contacts occur
simultaneously, the complementarity principle is then a very effective solution strategy [2].
The choice between these two contrasting approaches is one based on computational con-
siderations. For instance, the even driven approach is effective when dealing with systems of
rigid bodies featuring multiple contacts; the complementarity principle then gives an elegant
solution to an otherwise untractable problem. On the other hand, when dealing with sys-
tems modeled with finite element techniques, the approach proposed here seems to be more
effective.
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4 Modeling the Frictional Process

The detailed modeling of frictional forces poses unique computational challenges that will
be illustrated using Coulomb's law as an example. When sliding takes place, Coulomb's law
states that the friction force, Ff, is proportional to the magnitude of the normal contact
force, fn, Ef = -Ik(V) fn v/v, where .k(V) is the coefficient of kinetic friction and v the
magnitude of the relative velocity vector tangent to the friction plane, v. If the relative
velocity vanishes, sticking takes place. In this case, the frictional force is IE I • Ms fn, where
M, is the coefficient of static friction.

Application of Coulomb's law involves discrete transitions from sticking to sliding and vice-
versa, as dictated by the vanishing of the relative velocity or the magnitude of the friction
force. These discrete transitions can cause numerical difficulties that are well documented,
and numerous authors have advocated the use of a continuous friction law [12,13,14,10],
typically written as

-f= -Ik(V) ffl 2 (1 - elv1/vO), (21)
V

where (1 - e-1v 1/vO) is a "regularization factor" that smoothes out the friction force disconti-
nuity and v0 a characteristic velocity usually chosen to be small compared to the maximum
relative velocity encountered during the simulation. The continuous friction law describes
both sliding and sticking behavior, i.e. it completely replaces Coulomb's law. Sticking is
replaced by "creeping" between the contacting bodies with a small relative velocity. Various
forms of the regularizing factor have appeared in the literature; a comparison between these
various models appears in [15].

Replacing Coulomb's friction law by a continuous friction law is a practice widely advocated
in the literature; however, this practice presents a number of shortcomings [16]. First, it
alters the physical behavior of the system and can lead to the loss of important information
such as abrupt variations in frictional forces; second, it negatively impacts the computational
process by requiring very small time step sizes when the relative velocity is small; and finally,
it does not appear to be able to deal with systems presenting different values for the static
and kinetic coefficients of friction.

In reality, frictional forces do not present the discontinuity described by Coulomb's law
but rather, a velocity dependent, rapid variation. The regularization factor discussed above
smoothes the discontinuity through a purely mathematical artifact that makes no attempt
to more accurately represent the physical processes associated with the friction phenomenon.
On the other hand, physics based models address the behavior of the frictional interface under
small relative velocity. Typically, these micro-slip models allow small relative displacements
to take place during "sticking;" the frictional interface then behaves like a very stiff viscous
damper. Of course, such models are incapable of capturing the tangential stiffness of the joint
during micro-slip. The most common micro-slip model is the Iwan model [17], also named
elastic-perfectly plastic model [18]. In this approach, the frictional interface is modeled as a
spring in series with a Coulomb friction element featuring a friction force of magnitude pfn.
When the force in the spring reaches this magnitude, the force in the Iwan model saturates
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until the direction of slip reverses. An alternative approach to the treatment of micro-slip
involves modification of the friction law itself.

Over the years, several friction models have been proposed that more accurately model
various physical aspects of the friction process, such as the Valanis model [19]. Dahl [20]
proposed a differential model able to emulate the hysteretic force-displacement behavior
that characterizes micro-slip. The primary shortcoming of the Dahl model is that it does not
include the dependence of the friction coefficient on slip velocity. In particular, it does not
capture the rapid decrease in the friction coefficient as the interface begins to slip. Since this
drop is a major contributor to stick-slip oscillations, its omission could be a major drawback
in its application to joint dynamics. More recently, Canudas de Wit et al. have proposed the
LuGre model [21] that is based on a phenomenological description of friction. This model
is able to capture experimentally observed phenomena such as pre-sliding displacements,
the hysteretic relationship between the friction force and the relative velocity, the variation
of the break-away force as a function of force rate, and stick-slip motion associated with
the Stribeck effect. The LuGre model has further been refined by Swevers et al. [22] and
Lampaert et al. [23].

5 The LuGre Friction Model

The state of the art in friction modeling was advanced using the paradigm of intermeshing
"bristles" to explain the friction forces between two contacting bodies [24]. The bristle model
captures micro-slip and also accounts for the drop in friction force as the sliding speed is
increased. However, according to its authors, the model is computationally burdensome.
One of the more promising friction models developed from the bristle paradigm is the LuCre
model [21], which captures the variation in friction force with slip velocity, making it a good
candidate for studies involving stick-slip oscillations. Also, when linearized for very small
motions, the LuGre model is shown to be equivalent to a linear spring/damper arrangement.

The LuGre model is an analytical friction model summarized by the following two equations.

dz
/ O=aOZ +u-- l + 0 2V; (22)

dt

dz aoovf
d-- = v - Ilk) (23)dt k + (As - Ak)e-"I"/'17Z

The first equation predicts the instantaneous friction coefficient p as a function of the relative
velocity, v, of the two contacting bodies and an internal state of the model, z, that represents
the average deflection of elastic bristles whose interactions result in equal and opposite
friction forces on the two bodies. The second equation is an evolution equation for the
average bristle deflection. The coefficients ao, al, and 02 are parameters of the model; p,
and 1k are the static and kinetic friction coefficients, respectively; v, the Stribeck velocity;
and -y a final model parameter which is often selected as -1 = 2. The friction force acting
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between the bodies is then
ff = gfn, (24)

where ff is the normal contact force.

For convenience, the model is now rewritten in nondimensional form as

j 4= (1 -/3)• + (&1 + &2)0; (25)

z = ,(26)
where/f = I/ 1uk, D = v/vs, i = uoz/ILk, &• = alVs/~lk and &2 = O'2Vs/'k. The nondimensional
time is T = Qt, where

Q = oVs (27)

is the inverse of the time constant of the LuGre model. The notation () indicates a derivative
with respect to this nondimensional time. Finally, # IOI/•(O), where

§(f) = 1 + (A./! - 1)e--10 7. (28)

The evolution equation of the LuGre model, eq. (26), will be discretized in the following
manner, based on a time discontinuous Galerkin procedure [4],

Zf -Zi+/3Zf+Z3 = , z - zi oz-z =

AT -- 25-- A 6 = (29)

where, for simplicity, the hat was dropped from all symbols. The subscript ()g indicates the
following average ()g = 1/2(()f + ()j). Note the presence of quantities at time tj that will
bring about the numerical dissipation required for the simulation of the frictional process.

5.1 Properties of the Proposed Discretization

For steady state solutions zf = zj = zi = z,, eq. (29b) is identically satisfied, whereas
eq. (29a) implies/38 8zs, = v,,, which can be written as Ivlss(Svj.S. - Izl8 g(v 8 ) )) 0, where
so = sign(v,,) and s, = sign(z88 ). The first solution of this equation is yvl88  0, which
corresponds to sticking. The second is Izis = g(v,,) with s,,,,so, = 1, corresponding to
steady state sliding. For large sliding velocity, g(v88 ) ; 1, and hence, Iziss ; 1.

The discretization also implies an important evolution law for the strain energy of the bristles.
This evolution law is obtained by summing up eqs. (29a) and ( 2 9b) multiplied by (zf + zj)/2
and -(zf - zj)/2, respectively, to yield

Vs- V, .z19 1 6_
_A__ = _ Izlglg(_. ) s=z)- 1(1 + 6- - )(zj - zi)2, (30)

Ar =g(V 9 ) ý' ý~

where V = 1/2 z2 is the nondimensional strain energy stored in the bristles. The second term
of the evolution law, eq. (30), is a numerical dissipation term that is always negative. As the
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time step decreases, zj -+ zi as implied by the time discontinuous Galerkin approximation,
and the numerical dissipation vanishes. The first term is negative whenever s., Szg = -1,
or when s,9sz9 = 1 and lzlg/g(v,) > 1. In summary, (V1 - Vi)/Ar < 0 when Jzig > g(v,).

This implies the decreasing of the strain energy of the elastic bristles whenever 1z1g > g(v9).

Since the strain energy is a quadratic form of the bristle average deflection, this implies

the decreasing of the bristle deflection under the same conditions. Consequently, the bristle
deflection must remain smaller than the upper bound of g(v,), which, in view of eq. (28),
is equal to Pds//k. It follows that JZig < ,s/Pk. This inequality implies the finiteness of the
bristle deflection and of its strain energy.

The discretizations of the friction forces for the clearance joints proposed in this work,
eqs. (7) and (18), imply that the work done by the friction force over one time step is
AW = -ft AtVt = -/.LgfgAtvg; introducing eq. (25) then yields

aoAW
2 --- = - [(1 - 1g59 l)zg + (( 1 + 02 )vg] Vg. (31)

With the help of eq. (30), this work can be expressed as

aoAW v2  Z V 1 - - Mg Vg2

S• = 9(vg) g'VI9 A 1 Q916

2A-r 1 + ý-A-Tl)(zi - zi) 2. (32)

The first two terms are always dissipative, with the second term corresponding to the main
energy dissipation during sliding. The third term corresponds to the change in the potential
of the elastic deformation of the bristles. Although this term can be positive or negative, it
is finite since the potential is, itself, finite. As discussed earlier, when Jzig > g(vg), (V1 -
Vi)/Ar < 0 and the potential energy of the bristle deflection is released to the system. Under
a similar condition, s.9sZ9 = 1 and Jzig > g(v,), the fourth term also becomes positive.
Clearly, the third and fourth terms are non-dissipative only when the potential of the elastic
bristles is released. As discussed earlier, this potential is finite and increases in its value
stem from work done against friction forces; it is this very work that could be released at
a later time. Finally, the last term is a numerical dissipation term. Note that as the time
step size is decreased, (zj - z,) 2 rapidly decreases, and the numerical dissipation vanishes. In
summary, the proposed discretization of LuGre model guarantees the dissipative nature of
the friction forces, when combined with the proposed discretizations for the friction forces,
eqs. (7) and (18).

To be successful, the approach described above must be complemented with a time step size
selection procedure. When friction occurs, the friction model will dictate the time step for
the analysis. In view of the rapid variation of the function g(v) for small relative velocities,
the time step size must be reduced when the relative velocity is of the order of the Stribeck
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velocity v,. To achieve this goal, the time step size for the next time step is selected as

1 if v < 1
Atnew = ATtin{ ifv>1 (33)

where Q, given by eq. (27), is the inverse of the time constant of the LuGre model and the
quantity v, defined as v = (V,/vs)/(Omin ), measures the smallness of the relative velocity.
The existence of a time constant, 1/9, associated with the friction process as described by
the LuGre model, enable a rational time adaptivity strategy. The following values of the
parameters give good results for a wide range of problems: A•-min = 0.02, O)in = 5, and
a = 1.2.

Here again, the success of the present approach hinges upon two features of the model: the
physics based model of the friction force between the contacting bodies and time adaptivity.
The discontinuous friction force implied by Coulomb's law is replaced by a force with steep
time gradients that are then resolved using time adaptivity. This contrasts with "event
driven" computational strategies that first involve the determination of transition times (from
stick to slip or slip to stick), then different sets of governing equations are used depending
on the specific friction regime. The complementarity principle can also be used to formulate
friction problems [2]. When dealing with systems modeled with finite element techniques,
the approach proposed here seems to be more effective because it involves a single set of
governing equations for all friction regimes and furthermore, the unconditional stability of
the integration process can be guaranteed based on energy arguments.

6 Numerical Examples

Two examples will *be studied in this section. The same contact and friction models were
used for both examples. A linear spring of stiffness constant k = 15 MN/m was used for the
contact model. The parameters for the time adaptivity algorithm, eq. (20), are: =p = 3.0 10-6
m, qmin = 5, and a = 1.2. The LuGre model was used to model the friction phenomena with
the following parameters: cr0 = 105 m- 1 , Orl 0'2 = 0 s/m, v3 = 10-3 m/s, Pk = P, = 0.30,
and ', = 2.

6.1 The Spatial Mechanism

The spatial mechanism depicted in fig. 5 consists of crank of length L. = 0.2 m connected
to the ground at point S by means of a revolute joint that allows rotation about an axis
parallel to Y1. The motion of the crank is prescribed as 0 = Qt, where Q = 20 rad/s. At
point P, the crank connects to a flexible link of length Lb = 1 m through a universal joint
that allows rotations about axes Y2 and Y3. The other end of the link attaches to a spherical
joint at point Q. In turns, this joint connects a to prismatic joint of mass mQ = 5 kg
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that allows relative displacements along axis il. Finally, this prismatic joint is attached to
a flexible beam, cantilevered at point 0. The physical properties of the flexible beam are:
bending stiffnesses, 122 =133 = 23 kN-m 2, torsional stiffness, GJ = 18 kN-m 2, and mass

per unit span, m = 1.6 kg/m; those of the link are: bending stiffnesses, 122 = 133 = 12

kN.m 2, torsional stiffness, GJ = 9 kN.m 2, and mass per unit span, m = 0.85 kg/m; finally,

the sectional properties of the crank are: bending stiffnesses, 122 = 23.2, 133 = 29.8 kN.m2,

torsional stiffness, GJ = 28 kN.m2 , and mass per unit span, m = 1.6 kg/m.

Two cases will be contrasted in this example; for case 1, the spherical joint at point Q is
treated as a kinematic constraint, whereas in case 2, the same spherical joint features the
clearance model described in section 2.1 with pk = 50 and p1 = 49.5 mm. For case 1, the
simulation was run at a constant time step of At = 10-3 S; for case 2, the time adaptivity
algorithms were used. Simulations were run for a total of six revolutions of the crank to
obtain a periodic solution, and results will be presented for the fifth revolution of the crank.

The relative tangential velocity at the clearance joint is shown in fig. 6 for case 2. Note the
several occurrences of nearly vanishing relative velocities at crank angular positions from
150 to 250 degrees. The resulting frictional force is shown in fig. 7. Note that at crank
angle of about 275 degrees, contact in the joint is lost and the frictional force vanishes. This
intermittent contact behavior, coupled with the elastic response of the system, creates rapid
variations in the normal contact force that are reflected in the friction force. Fig. 8 shows
the time history of the root forces in the beam at point 0. Whereas the overall responses
for cases 1 and 2 are qualitatively similar, it is clear that the strong variations in both
normal and tangential contact forces excite the elastic modes of the system, resulting in full
coupling between the dynamic response of the system and the behavior of the contact forces.
The same comments can be made concerning the link mid-span forces shown in fig. 9; the
oscillatory component of the stresses would strongly impact the fatigue life of these structural
components. Finally, the implication of the varying relative velocity on the time step size
used in the simulation is evident in fig. 10; clearly, for this problem, the time step size for
the simulation is driven by the friction model. The parameters associated with the time step
size control algorithm for friction, eq. (33), are: ATmin, = 5.0 10-4, Omin = 5, and a = 1.5.

6.2 The Supercritical Rotor

The simple rotor system depicted in fig. 11 features a flexible shaft of length L8 = 6 m with
a mid-span rigid disk of mass md = 5 kg and radius Rd = 15 mm. The shaft is a thin-walled,
circular tube of mean radius R, = 50 mm and thickness t = 5 mm; its sectional properties
are: bending stiffnesses, 122 = 28.2 and 133 = 28.7 kN-m2 , torsional stiffness, GJ = 22.1
kN-m 2, and mass per unit span, m = 0.848 kg/m. The center of mass of the shaft is located
at a 1 mm offset from its geometric center. At point R, the shaft is connected to the ground
by means of a revolute joint; at point T, it is supported by a spatial clearance joint. The
radius of the cylinder is pk = 80.8 mm and that of the disk is pt = 80 mm. At first, the
natural frequencies of the shaft were computed and the first critical speed zone was found
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to correspond to shaft angular speeds Q E [44.069,44.453] rad/s.

The system is initially at rest and a torque is applied at point R with the following schedule

S= (1 - cos 27rt) t < t,Q(t)=Qo{
(1 - cos2*t,) t > t,

where Q0 = 0.825 N-m and t8 = 0.93 s. The time history of the resulting angular velocity of
the shaft is depicted in fig. 12 which also indicates the unstable region. After 2 s, the rotor has
crossed the unstable region of operation and stabilizes at a supercritical speed of about 50
rad/sec. The trajectory of the mid-span point M is shown in fig. 13. Since the shaft must first
cross the unstable operation zone, the trajectory first spirals away from the axis of rotation
of the shaft, as expected. Once the unstable zone is crossed, the shaft regains equilibrium
and due to the friction in the spatial clearance joint, the amplitude of the motion decreases.
Since in supercritical operation the shaft is self centering, a displacement of about 1 mm
(corresponding to the center of mass offset) is expected for point M. The time history of the
normal contact force is depicted in fig. 14; large contact forces are generated as the shaft
crosses the unstable zone, however, while regaining stability, intermittent contact episodes
are observed, 2.1 and 2.6 s into the simulation. When contact is restored, large impact forces
are experienced, up to about 100 N, i.e. an order of magnitude larger than those observed
during the continuous contact regime. In supercritical operation, the contact force decreases
to smaller levels. Similar behavior is observed in fig. 15 that depicts the bending moments at
the root of the shaft. The parameters associated with the time step size control for friction,
eq. (33), were selected as: ATmin = 0.1, fbmin = 500, and a = 1.2.

In this example, the relative velocity at the spatial clearance joint always remains much
larger than the Stribeck velocity, and hence, application of Coulomb's law would probably
give satisfactory results. On the other hand, the first example presents numerous stick-slip
transitions: the relative velocity at the joint vanishes numerous times at each revolution of
the crank. These two examples show that the proposed approach to the modeling of friction
forces by means of the LuGre model is capable of dealing the various regimes of friction. In
the case of high relative velocity, the computational cost associated with the LuGre model is
minimum, because its use has no impact on the required time step size, on the other hand,
when low relative velocities imply stick slip events, the proposed approach still perform well,
although small time step sizes are required.

7 Conclusions

The present paper has proposed an approach to increase the versatility and accuracy of
unilateral contact models in multibody systems. Two joint configurations were developed,
the planar and spatial clearance joints that can deal with typical configurations where contact
and clearance are likely to occur. More general configurations could be developed based on
the same principles. The kinematic analysis of the joint yields two important quantities:
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the relative distance between the bodies that drives the intermittent contact model and
the relative tangential velocity that drives the friction model. An arbitrary contact force-
approach relationship can be used for the contact model. For the friction model, the use
of the LuCre model was proposed in this work. This physics based model is capable of
capturing a number of experimentally observed phenomena associated with friction. From
a numerical stand point, it eliminates the discontinuity associated with Coulomb's friction
law. Discretizations were proposed for both normal contact and friction forces that imply an
energy balance for the former and energy dissipation for the latter. When combined with the
energy decaying schemes used in this effort, these properties of the discretizations guarantee
the nonlinear stability of the overall numerical process. The numerical simulations rely on
time step adaptivity; simple, yet effective strategies were given to evaluate the required time
step size when contact and friction are occurring. The efficiency of the proposed approach
was demonstrated by realistic numerical examples that demonstrate the coupling between
contact and friction forces and the overall dynamic response of the system.
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ABSTRACT some studies have shown that variable normal forces in a
Friction at connecting joints is a key mechanism by which frictional joint can give rise to largely "linear" structural

passive damping occurs in built-up structures. This paper damping [5, 6]. In such cases, the free response is characterized
explores the ability of friction to transfer energy between by exponential-like (rather than linear) envelopes of decay. A
subsystems of an interconnected system. Two single-degree-of- number of review articles have surveyed the research done on
freedom (SDOF) systems are used to represent separate the effects of joint friction on structural damping [7- 9].
subsystems and a third mass is used to represent the connecting Rather than focusing on characterizing the damping of
joint. A Stribeck friction model is used to represent the resistive a complex built-up structure, this paper explores the energy
force acting on this coupling mass. Through numerical dissipation caused by dry friction at a connecting joint. It is
simulation studies, the influence of the subsystem dynamics on understood that joint friction affects damping by converting
the overall energy dissipation levels is investigated. In mechanical energy into heat by rubbing. Less obvious,
particular, it is seen that favorable tuning conditions exist that however, is that friction can serve as a catalyst for energy
result in a "pumping" of energy from the low-frequency motion pumping. The phenomenon of energy pumping is defined as
of one subsystem to the higher-frequency motion of the other the controlled one-way transfer of vibrational energy to a
subsystem. It is also seen that one-way energy transfer can passive nonlinear sink, where the energy localizes and
occur in such a system due to the eventual joint lock-up that can dissipates over time [10]. It is hypothesized that joint friction
occur when the connecting mass sticks. can be a means to pump low-frequency vibrational energy to

high-frequency vibrational energy, through the action of stick-

1. INTRODUCTION slip oscillations. In a finite element simulation of a truss
Friction in connecting joints plays an important role in the structure, Onoda et al. found that backlash nonlinearity at the

damping capacity of built-up structures. It is estimated that as joint transferred vibrational energy from lower modes to higher
much as 90% of mechanical energy loss in space structures is modes [11]. Since energy can be dissipated faster at higher
due to dry friction at the connecting joints [1, 2]. This fact is frequencies, this pumping of energy to excite higher resonances
especially important for space structures because free vibration may serve as a tool for increased energy dissipation. In this
during deployment or positioning is undesirable and because manner, an inherent property of friction can be exploited to
alternate means of increasing damping are limited. An accurate improve the overall damping capacity of the system.
prediction of how much damping one can expect from a A simplified model of a connecting joint with friction is
particular structural design is a topic of much research. In a presented first. The model consists of a 3 degrees-of-freedom
series of experimental studies, Folkman et al. found that the loss (3DOF) spring-mass-damper system with a frictional interface.
factor of a truss structure depended on the structure's The algorithm used to calculate the friction forces and the
orientation and the amplitude of vibration [3, 4]. The damping simulation parameters are presented as well. Simulations were
supplied by dry friction depends on the joint preload, which performed using Matlab and the equations of motion were
varies depending on the structure's orientation. Other studies solved using the 4d' order Runge-Kutta method. The steady-
have shown that the compliance of the joints themselves can state and free vibration responses of the system are explored,
influence the nature and level of passive damping. For example, followed by a wavelet analysis of the free response. Next, a
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parametric study of the energy dissipation in the system is allows one to distinguish between the energy dissipation by
conducted. Finally, conclusions are made concerning the viscous damping from the energy dissipated due to dry friction.
advantage of using friction as a tool for increased energy
dissipation. 0.5 --------- ----- -- --------- -------

0.4 - ....... ----------

2. SYSTEM MODEL 0.3 ----- - - .......
To model the friction contact at a connection joint, a 3 0.2-......

degree-of-freedom spring-mass-damper system was used. This
system, shown in Figure 1, represents two structures modeled as0.-
single-degree-of-freedom systems that are coupled by a mass 0 - -

sliding against a friction surface. The sliding mass (m2) is an -0.1- -- ,

order of magnitude smaller than masses m, and m3. The -0.2 - - - --

absolute position and velocity of each mass are denoted by xi -0.3 ------ - -- --- ------------- ---------

and vi, respectively, while the parameters k; and c, denote spring -0.4 "
and viscous damping constants, respectively. The function,
P(t), represents an external force applied to mass 1. 1 1

-0.5 -0.25 0 0.25 0.5
Velocity (mis)

X, V1 X3X2 , 2 3

N -Figure 2. Stribeck friction coefficient as a function of velocity.

rk•...f N 2 M s M iAs seen in Figure 2, there is a discontinuity in the friction
-- i force when the slip velocity is zero. This condition presents

c 02C 3  many numerical difficulties and is difficult to simulate [14]. In
F(V2) this study, a sliding mode control (variable structure system

theory) algorithm was used to handle the discontinuity [15]. A
Figure 1. System model of frictional contact at a connection derivation of the equations of motion and a discussion of the

joint, numerical solution technique is presented below.
The equations of motion for the 3-DOF system can be

written in the form
The friction force, F(v), is defined as

[M{i}+ [C{i}+ [K{x}= {el}P - {e 2}F (3)
F(v) = uNsgn(v) (1)

where {x} = [xl x2 x 3]T, {el} = [1 0 Of, {e} = [0 1 0]f, and
where v is the slip velocity, p is the friction coefficient, N is the the overdot represents a derivative with respect to time. The
normal force, and sgn(v) is the signum function where sgn(v) = matrices [MI], [C], and [K] are the mass, damping, and stiffness
v/vl, v # 0. Using the Stribeck friction model, the friction matrices, respectively, and are defined as
coefficient, #i, is given by [m, 0 01

,u=fl* +(e-h - 1) +atvI (2) M = 0 m2 0

where p* is the static friction coefficient and parameters y, f8,
and a are constants [12]. Figure 2 shows the relationship
between the Stribeck friction force and the slip velocity. The 2 -k 2  0
key feature is the decrease in friction force as JvJ increases K -k2 k2 +k3 -k3around zero. This feature is believed to be responsible forL 0 - k3 k3 +k4l'
stick-slip behavior, which is central to the energy pumping and
energy dissipation phenomenon under study [13]. In equation
(2), the parameter y specifies the difference between the static cI +C2 -C2 0and sliding friction coefficients while 8l determines the C= -C2 c2 +C3 -c3 .
steepness of the transition. The coefficient a was set to zero [ 0
because it is typically associated with a viscous-damping -c 3  c3 +c4

characteristic of lubricated contact. Setting a equal to zero
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In order to simulate the response of the 3-DOF system, the NO
equations given by (3) are rewritten in the first-order, state- ,space form

{f}= [A {y}+ {B}F + {I-P 
(4)

where {y} = [xi x2 x3 v] v2 v3]T, {B} -[0 0 0 ([tM-'{e 2})T]T, F, '-(tT]Z (i)F•'7[TI([A

and {t} = [0 0 0 ([Mf' {ej})T]T. The 6x6 state matrix [A] is
defined as

[A]F [01 [W 1F,11* E
[I _[M]_[K] -[M]-'[c]J

where [0] is a 3x3 zero matrix and [1] is a 3x3 identity matrix.
The friction force, F, was calculated using a sliding mode
control algorithm, which is discussed next. eq

The techniques developed and used in the area of sliding
mode control can be used to define the "equivalent dynamics"
that exist when sticking takes place. Numerically, sticking is Figure 3. Flow chart to calculate friction force (P = 0 case).

assumed to be possible when 1v21 < 0.001 m/s. Note that v2 canbe expressed as To observe the stick-slip behavior of the 2nd mass, the
steady-state and free vibration responses of the system were

v2 = [T]{y} (5) simulated. The goal was to excite the V' mass to induce stick-
slip motion in the 2 nd mass. This stick-slip motion would pump
energy from the vibration of the 1" subsystem to the 3rd

where [7] = [0 0 0 0 1 0]. During sticking, the slip velocity is subsystem.

identically zero; hence its time derivative must also be zero.

Taking the time derivative of (5) yields 3. SYSTEM SIMULATION

Once the equations of motion and the sliding mode control
,2 = [TJ{'} = [T][A{y}+ {B}F + {r}P)=0. (6) algorithm were established, simulation of the 3-DOF system

was straight-forward. The method used to simulate the system
Since equation (6) represents the condition when the slip was the 4th order Runge-Kutta scheme with a fixed time step of
velocity is zero, the friction force, F, must be the force 1 ms. Table 1 summaries the values used for the simulation.
necessary to impose the sticking condition. This force is known
as the equivalent friction force, Feq. Solving (6) for F yields

Table 1. Simulation Parameters
Feq =-([TJ{B})-' [T]X[A]fy}+ {r}P). (7)____

System Value Friction Value

Figure 3 shows a flow chart of the logic steps to calculate the Parameters Parameters
friction force. If the slip velocity is equal to or smaller than the ml, m3  100, 50 p 0.50
Stribeck velocity (vy = 0.001 m/s), then the equivalent friction kg

force is calculated. However, if this equivalent force is greater m2  0.25 kg y 0.30
than the maximum static friction force (u *N), then the mass is 1000
assumed to break free, and the friction force is set equal to the kl, k4  N/rn
dynamic friction force given by (1) and (2). 0.0

k2, k3 100 N/m vr n/s

1 3 0.01, N 100 N
_ 1,2,4, __ 1 0.05

The 3DOF system can be divided into three subsystems;
each subsystem assumes only one of the masses is moving. The
natural frequencies for each subsystem are therefore given by

3 Copyright 0 2005 by ASME



(V8 k2 , W2 2 +2 k3 m3 "

M1 XRMS = Jx2dt (12)

A small amount of viscous damping was added to the system in 1t(

order to study the interaction of stick-slip energy dissipation where T is some time duration in the steady-state and is given as

and structural damping. The damping coefficients were chosen T = t2 - t. The time duration T was defined to be the last 5

based on the following relations: periods of the forcing frequency at the end of each simulation.
The RMS response was captured over a span of excitation

c, = 2ýltu ml, C2 = 22 (o2 m2  frequency ratios, d, defined as d = w/wo. To expedite the
C -. (9) simulations, the end states of the each steady-state response

3= 2ý30ýM3 , C4 = 2ý 4 0)3M4  were used as the initial conditions for the next frequency ratio.

(Simulations were always terminated after an integer number of
where ýi are closely related to the damping ratios of the excitation periods had passed.)

individual subsystems. The damping ratios are all 1%, except Figure 4 shows the RMS displacements of the 3rd mass as a

for the 3 rd damper, which is 5%. This higher damping ratio for function of driving ratio for four tuning ratios, r. This plot

ý3 was chosen to ensure adequate excitation of the third shows the presence of internal resonances when the driving

subsystem. The partition into three subsystems was useful in frequency is roughly one-third of the tuned natural frequency of

analyzing the behavior of the 3-DOF system. During periods of the 3 rd subsystem. For example, there is an internal resonance

sticking by the 2 "d mass, the I' and 3 rd masses oscillate like at a driving ratio of 1.33 when the frequency ratio is 4.0. This

linear single-degree-of-freedom (SDOF) systems with natural phenomenon occurred at all the tuning ratios except when r =

frequencies given by w, and w3, respectively. 3.0. At this frequency ratio, the internal resonance would occur
at d = 1.0, which is overshadowed by the resonance of the I's

3.1 Steady-State Vibration Response subsystem. Also noticeable in Figure 4 are the internal
In order to understand the behavior of the system, the resonances corresponding to one-fifth of the frequency ratio;

3DOF system was subjected to harmonic excitation of the form: e.g., the small peak at d = 0.6 for the case r = 3. Lastly, the
double peak near d = I for the case r = I is due to resonances of

PQ) = W sin(wdt) (10) the V t and 2nd modes being closely spaced together.

where W is the force amplitude (1500N), W
0
d is the driving 10 . . .. .1

frequency, and t is the time. Since the stick-slip motion of the - • 2

2nd mass exhibits odd numbered harmonics, tuning the 3 rd r =3

subsystem to one of the harmonics would theoretically produce 10-
an internal resonance in the response [16]. The 3 d subsystem 0.31
was tuned by keeping k3 and mq constant and varying k4 so that 1.33

k4 =(11) (k 10+ k 3X

where r is the tuning ratio defined as 3 s/col.
Before the steady-state response is presented, it is 10

instructive to examine the linear modes of the 3DOF system in
the absence of friction. Mode 1 is mostly dominated by mass 1, 10_
mode 2 is dominated by mass 3, and mode 3 is dominated by 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

mass 2. The modes are fairly localized, except when the tuning Dring Ratio, d

ratio is 1. When r = 1, modes I and 2 have nearly the same
natural frequencies. As the frequency ratio is increased from 1, Figure 4. RMS displacement of the 3rd mass as a function of
only the natural frequency of mode 2 is increased, whereas the driving frequency.
natural frequencies of modes I and 3 remain relatively constant.

The steady-state response of the 3-DOF system was An examination of the time histories of the steady-state
obtained by simulating the system until the transient dynamics responses revealed a significant amount of stick-slip of the 2"d

disappeared. Rather than using the peak displacement per mass., Thus, excitation at a single frequency is converted into
cycle, the amplitude of the steady state response of each mass multi-harmonic response by means of the friction nonlinearity.
was described by its root-mean-squared (RMS) displacement:
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Under favorable tuning conditions, these higher harmonics 0.6 Ma 1

excite internal resonances as expected. In the following section, ---- Mass 2

we examine the extent to which subsystem tuning can lead to ............ Mass 30.4 I '
enhanced energy dissipation during free response. 04

3.2 Free Vibration Response oen0.2frn 1 •P ...h3- EstmwsThe free vibration response of the 3-DOF system was ;i
sim ulated to quantify the energy transfer from one subsystem to 0 t,' ,. , _., _•,, ' , , ,, ,

the other and from low frequencies to higher frequencies. 2 F >

Furthermore, it was necessary to understand under what states 8-0.2,

of excitation, friction level, and tuning of the 3 rd subsystem did
favorable conditions existed for maximum energy dissipation. -0.4 , ,
To simulate the free response, the external force P(t) was set to
zero and an initial velocity of 2.0 m/s was applied to mass 1. -0.6

Figure 5 shows a typical free response of the 3-DOF system
for a normal force of 40 N and a tuning ratio of r =1. While the 0 5 10 15 20 25

displacement and velocity of the ' mass decrease with
approximately linear envelopes of decay, the 2nd mass shows
periodic stick-slip behavior until it is completely stuck at a time (a)
of about 20 s. This stick-slip behavior is more evident in the -- Mass1
velocity of the 2 nd mass shown in Figure 5b. The result Mass 2

demonstrates that there is a one-way transfer of vibratory 2 . Mass3

energy from the I' mass to the 3 rd mass because once mass 2 is
stuck, masses 1 and 3 oscillate like damped, isolated SDOF 1I ,.
systems. Lastly, note that the free response of the I' mass is ,,: . F , ,
similar to having a persistent, nearly harmonic excitation of 0masses 2 and 3 through the force in spring k2 and viscous 0 -•.i-•.•

damper c2. .

As shown in Figure 5, it is clear that there is a transfer of 1

energy from the 1' mass to the 3rd mass. However, we wish to ,
examine whether friction indeed pumps energy to higher
frequencies, particularly at tuning ratios, r, higher than one. Toaccomplish to task, the free response of the 3-DOF system was

analyzed in both time and frequency domains using the -35

continuous wavelet transform (CWT). "lime (s)

(b)

3.3 Wavelet Analysis of the Free Response Figure 5. (a) Displacement and (b) velocity time histories of the
The wavelet transform has been popular because of its 3-DOF system (N = 40N, r = 1).

ability to analyze non-stationary signals. Furthermore, unlike
the Fourier transforms, the wavelet transform is capable of good Figure 7 shows the CWT (using a Morlet wavelet) of the
resolution in both frequency and time domains. Figure 6 shows velocity of mass 3. The transform was implemented using the
the velocity time history of the free response of the 3-DOF WaveLab 802 package for Matlab [17]. The colors indicate the
system for N = 40N and r = 2. Similar to Figure 5b, the magnitude of the wavelet transform, with blues indicating
velocity of the mass I oscillates at one frequency and decreases peaks. From Figure 7, there are two distinct frequency bands.
almost linearly while mass 2 exhibits significant stick-slip Initially, the lower frequency band has a relatively large
oscillations. Although difficult to determine from this Figure, magnitude and decreases as time increases. Just as the lower
mass 3 appears to contain higher frequency content, frequency band diminishes, the higher frequency band appears.

Since kinetic energy is the square of the velocity, Figure 7
shows that through the frictional interface, kinetic energy at one
frequency is pumped to a higher frequency. Similar analysis of
the displacement yields the same conclusion regarding the
potential
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Figure 6. Velocity time history for N = 40N and r 2. Figure 8. CWT of the velocity of mass 3 for N= ON
and r 2.

energy in the system. Lastly, notice that the frequency in on a
logarithmic scale of base 2. On a linear scale, the nominal impulsive force (initial velocity) is applied to mass I as the
value of the higher frequency band is twice that of the nominal excitation. This impulsive force provides a broad range of
value of the lower band. This result is consistent with the frequencies to the system.
tuning ratio of 2.

6 4. ENERGY DISSIPATION
5. To quantify how much energy was transferred, it was

necessary to look at the energies in the combined system as well
as in the individual subsystems. Of further interest was the

4.5 energy transfer at frequencies higher than that of the
4 fundamental frequency of the 1V mass. To accomplish this task,

the 3rd subsystem was tuned for a range of tuning ratios, r.
3.6 When the stick-slip motion excited a resonance of the 3rd

3 subsystem, there would be a corresponding increase in
2.5 displacement and velocity. This increased velocity would

correlate to higher energy dissipation by the dampers connected
2 to the 3'd mass. Therefore, by examining the energy dissipation

1.5 in the 3-DOF system, one could quantify the amount of total
energy transfer and the energy transfer at higher frequencies.

0 5 10 Is 20 25 30 The total energy, ETroal, in the 3-DOF system is defined as"Time (s)

Figure 7. CWT of the velocity of mass 3 for N- 40N E l i}rT[K] [0] IY (13)
and r = 2. 2.. 1 013)

To be sure that friction is indeed the mechanism for where [0] is a 3x3 zero matrix. Therefore, the total energy
pumping energy to higher frequency, a CWT is calculated for dissipated, Ed,[ , is given by
the velocity response of mass 3 when friction is not present (N=
ON), as shown in Figure 8. Compared to Figure 7, there is no
significant frequency band at the higher frequency in Figure 8. = -( t0  t(
In fact, there is some energy in the higher band at the early
times, however, this energy dissipates quickly and the majority where is the end time of the simulation. The total energy
of the energy in the system is in the lower frequency band. The dissipated can be separated into the sum of the energy
energy at the higher band can be attributed to the fact that an dissipated by viscous dampers and the energy dissipated by

Coulomb friction. If the power dissipated by each viscous
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damper is denoted as P,, the total dissipated energy can be ratio (rn/rn1), the tuning ratio (r = w/lw,), the normal force, and
expressed as the simulation time. A mesh was used to visualize how the total

4 #* dissipated energy varied as a function of two variables. For the

Edis Z ~ fp Pdt + (Edis )friction (15) mesh shown in Figure 9, the constant values are the mass ratio

H= 0 (0.5) and the simulation time (15.1 s). This simulation time

where corresponds to one-half of the time constant of the I'
2 P2 c2  v2 -v) 2  subsystem, where the time constant = I/(w1e(1). The normal

P,=j-V 2= 2(2 2 (16) force is varied from 0 to 100 N, in increments of 10ON; and, the
P3 =C3 (V3 - V2 )Y P4 =C4 'V3  tuning ratio is varied from 0.6 to 8.0, in increments of 0.1.

Figure 9a shows the total energy dissipated after 15.1 s of free

By (15), it is then possible to indirectly calculate the energy response. There is a large peak near a tuning ratio of r = 1, but
dissipated by friction, there are some smaller peaks as r is increased and N is greater

than 80 N. To study this feature more closely, the energy
-. - - -:dissipated by the 3r and 4h" dampers over the same time interval

are examined, as shown in Figure 9b.
-2 near From Figure 9b, there is a large peak in dissipated energy

-~ near a tuning ratio of 1. This peak appears to be the result ofa
"vibration-absorber" effect. As the normal force increases, the
absorber effect isless prominent and ripples in the energy
dissipation at higher tuning ratios can be seen. Finally, at N

1140,100 N, there are definite peaks that are evident at certain tuning
I ratios. The peaks suggest that the force input to mass 3 excites

.120,a resonance, thereby causing greater energy dissipation.
100 A slice of the mesh in Figure 9b at N = 100 N is shown in
so Figure 10. This plot clearly shows five distinct peaks between

60 41 2 0 the tuning ratios of 2 and 7. These peaks correspond to tuning
202 ratios of r = 2.0, 2.9, 3.9, 4.7, and 5.7. In other words, when

Normll orc (N) 0 8 6 Feq. ati, rtuned to these higher frequencies, the resonance of the Pr
Norml Foce N) Feq.Rati, rsubsystem was excited by the stick-slip motion of the 2nd mass.

(a) Therefore, favorable energy dissipation occurred when the Pr
subsystem was tuned to the stick-slip frequencies. As

-~ - I mentioned previously, the natural frequencies of the Pr
60 -- - - -I- Isubsystem and that of mode 2 in the linear (frictionless) system

60 are closely related. In fact, the natural frequencies of the 3rd

-0 -- - - subsystem and that of mode 2 are nearly identical for tuning

20 _ - -18 - - - - -I - - - - - - - - -

i E

0 16 ----

80 j --- -- -

1100 V

080

Normal Force (N) e.Rto

(b) 10 -- -- - - - -

Figure 9. Energy dissipated by the (a) entire system and (b) the______________________
Yrd and 4th dampers.0 '2 3L 4 5 6 7

Freq. Ratio, r

To find the optimal condition for friction to pump energy to
higher frequencies, several factors were considered. The total Figure 10. Energy dissipated by the Yrd and 4 1h dampers at N
energy of the system was evaluated as a function of the mass 100 N.
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ratios above 1. Therefore, exciting a resonance of the 3 rd 26

subsystem is analogous to exciting the 2 nd mode in the linear 24 - N= 80

system. - N = 110

The result shown in Figure 10 is interesting because it does 22

not agree with the result from the steady-state response. 20
Although the peaks in Fig. 7 appear in somewhat regular
intervals, they do not occur at only odd harmonics of the S 18
frequency of free vibration of the 1V subsystem. This behavior 16
could be attributed to the stick-slip motion during free response P 14-
(see Fig. 5b). Since the stick-slip lasts for a finite amount of 1

time, the input into the 3rd subsystem looks like a series of W 12  - ,
impulses. The impulses have broad frequency content and can 10 .
excite many frequencies. 

-

To find the best condition for energy dissipation, the energy 8

dissipated by the 3 d and 4dh dampers was examined for different 6__
levels of normal force and mass ratios (m3/ml). Figures 11 and 0 1 2 3 4 5 6 7

12 examine how the energy dissipated by the 3 rd and 4th Freq. Raio, r

dampers varies with mass ratio and normal force, respectively. Figure 12. Energy dissipated by the 3 rd and 4th dampers with
Simulation duration times of longer than 15 s did not have a varying N (mass ratio = 0.5, t = 15.1 s).
significant effect on the energy dissipation trends because
permanent sticking occurred shortly after 15 s. N. At normal forces above 110 N, mass 2 is completely stuck at

Figures 11 and 12 show that the energy dissipation is all times for the initial condition considered here.
sensitive to system parameters. In Figure 11, the peaks increase The previous results show that friction pumps energy to
as the 3Yd mass decreases. This trend is consistent with a higher resonances, which serves to increase energy dissipation
vibration absorber, in which a smaller absorber mass leads to at the higher resonances. However, it is important to note that
increased absorption over a smaller frequency range. At a mass the majority of energy dissipation in the 3-DOF system is due to
ratio of 0.25, there is a sharp rise in the V peak. However, the friction on mass 2 and the dampers connected to the 1 st mass,
5th and 6"h peaks are not as pronounced when compared to a where the motion originated. For example, at a tuning ratio of
mass ratio of 0.5. Similarly, a mass ratio of 1.0 does not 1.1, the energy dissipated by the 3 rd and 4th dampers accounts
produce noticeable peaks, except when r is near 1. for 11% of the total energy dissipated. At a tuning ratio of 2.0,

In Figure 12, the peaks at r = I decreases as the normal the energy dissipated by the 3rd and 4h dampers accounts for
force increases, as mentioned earlier. Similar to the mass ratio, 7% of the total energy dissipated.
the peaks at tuning ratios larger than I are best accentuated at a Despite the modest amounts of energy dissipation
particular value. In this case, the value is a normal force of 100 attributed to the 3 d and 4th dampers, it is necessary to evaluate

30'Mass the advantage of the energy pumping phenomenon versus the
- Mass Ratio = 0.50 case where friction is not present (normal force = 0). To make
25-- Mass Ratio =1.00 1 this comparison, the ratio of the energy dissipated by the 3rd and

4t' dampers to the total energy dissipated was evaluated for the
friction and non-friction cases. Table 2 summarizes the

-S 20 comparison when the normal force is 100 N versus 0 N at
0.S /tuning ratios corresponding to the peaks in Figure 10. For the

"frictionless case, the energies dissipated are constant after an
P 15 initial peak at a tuning ratio of 1.

1 \Table 2. Percentage of Energy Dissipated by the 3 rd and 4th

1 -- Dampers to the Total Energy Dissipated

_Ratio__Freq.I_1.1 , .% 2"9 .9__i 4.7 5.7

Freq. Ratio. r N N =00 1

Figure 11. Energy dissipated by the 3 rd and 4h' dampers with A^O 2 27 27 . . .,
varying mass ratios (N= 100 N, t-- 15.1 s). -
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Table 2 shows that there is greater dissipation for the REFERENCES
friction case except when the tuning ratio is at 1.1. Although
the advantage is small (about 4% of the total energy dissipated), 1. Ungar, E.E., "The Status of Engineering Knowledge

this result demonstrates that the pumping of energy to higher Concerning the Damping of Built-up Structures," Journal

resonances can serve as a tool for increased dissipation. As for of Sound and Vibration, vol. 26, pgs. 141-154, 1973.

the case where the tuning ratio is 1.1, there is greater dissipation
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the total energy dissipation is greater in the system with friction. Vibration Digest, vol. 24, pgs. 3-7, 1992.
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Guidance, Control, and Dynamics, vol. 13, pgs. 228-233,

5. CONCLUSION 1990.
The purpose of this study is to explore the effects on energy

dissipation by dry friction at a connection between subsystems. 4. Folkman, S.L., E.A. Rowsell, and G.D. Fermey, "Influence of

In particular, the ability of friction to pump energy from a low Pinned Joints on the Damping and Dynamic behavior of a

vibrational frequency to higher frequencies was investigated. Truss," AIMA Journal of Guidance, Control, and

This pumping could serve to increase the overall energy Dynamics, vol. 18, pgs. 1398-1403, 1995.

dissipation in the system. From numerical simulations of the

steady-state forced and free responses, several aspects of the 5. Hertz, T.J. and E.F. Crawley, "Displacement Dependent

system were observed. In the case of harmonic excitation, the Friction in Space Structural Joints," AIAA Journal, vol. 23,

frictional interface produced a stick-slip response that excited pgs. 1998-2000, 1985.

internal resonances at odd harmonics of the driving frequency.
Second, there was a one-way transfer of energy from one 6. Ferri, Aldo A., "Modeling and Analysis of Nonlinear Sleeve

subsystem to the other in the free response. Third, a wavelet Joints at Large Space Structures," AIAA Journal of

analysis of the free response concluded that the frictional Spacecraft and Rockets, vol. 25, pgs. 354-360, 1988.

interface pumped energy to a higher frequency. Finally, by
studying the energies in the 3-DOF system, it was shown that 7. Ferri, A.A., "Friction Damping and Isolation Systems," ASME

tuning produced favorable conditions for energy dissipation. Journal of Vibration and Acoustics, Vol. 117(B), June 1995,

When the 3rd subsystem was tuned to the higher frequencies pp. 196-206

generated by the frictional interface, there was an increase in
energy dissipation versus the case where friction was not 8. Ferri, A.A., "Damping Through Use of Passive and Semi-

present. This increase in energy dissipation could lead to an Active Dry Friction Forces," in Dynamics with Friction:

improved damping capacity of the overall system. Modeling, Analysis, and Experiment, Part II, Vol. 7, Series
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more thorough understanding of the phenomenon. The Scientific Publishing, 2001, pp. 253-308.

subsystems are SDOF spring-mass-damper systems and the

friction model is of the Stribeck type. Future studies could 9. Gaul, L. and R. Nitsche, "The Role of Friction in

employ more complicated joint models and different friction Mechanical Joints," Applied Mechanics Reviews, vol. 54,

models. Application of these studies to more complicated pgs. 93-105, 2001.

structural subsystems could validate the general observations

about the importance of tuning of natural frequencies to the 10. Gendelman, 0., L.I. Manevitch, A.F. Vakakis, and R.

stick-slip frequencies. Ultimately, it would be desirable to M'Closkey, "Energy Pumping in Nonlinear Mechanical
develop design rules that lead to enhanced damping levels of Oscillators: Part I - Dynamics of the Underlying

the global structural system. Hamiltonian Systems," ASME Journal of Applied
Mechanics, vol. 68, pgs. 34-41, 2001.
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ABSTRACT LuGre model are analyzed and the dynamic system is simulated
Friction is a difficult phenomenon to model and simulate. using several numerical integration techniques. Finally,

One promising friction model is the LuGre model, which conclusions are made concerning the most efficient technique
captures key frictional behavior from experiments and from to simulate the LuGre friction model.
other friction laws. While displaying many modeling
advantages, the LuGre model of friction can result in FRICTION MODELING AND SIMULATION
numerically stiff system dynamics. In particular, the LuGre Numerical difficulties associated with simulation of
friction model exhibits very slow dynamics during periods of frictional systems are well documented. See, for example,
sticking and very fast dynamics during periods of slip. This [Armstrong-Helouvry, et al, 1994; Mitiguy and Banerjee,
paper investigates the best simulation strategies for application 1999], etc. The basic problem is one of numerical stiffness.
to dynamic systems with LuGre friction. Several simulation Simple models of friction, derived from the Coulomb friction
strategies are applied including the explicit Runge-Kutta, paradigm, suggest that the friction force changes
implicit Trapezoidal, and implicit Radau-IIA schemes. It was "discontinuously" as the direction of interfacial slip changes.
found that both the Runge-Kutta and Radau-IIA methods Figure 1 shows some typical sketches of friction force versus
performed well in simulating the system. The Runge-Kutta slip velocity. It should be noted that "sticking" of the frictional
method had better accuracy, but the Radau-IIA method required interface is characterized by zero slip velocity; therefore, it is
less integration steps. not uncommon for the frictional interface to spend intermittent

and finite periods of time at zero slip velocity, where the
INTRODUCTION friction law is discontinuous.

Friction is a natural phenomenon that occurs in many
engineering systems. In cases where the effects of friction f/N f/N f/N
cannot be ignored, a good friction model is necessary for the Ps

design, control, and analysis of the system. Although the
concept of friction is easily understood, it is notoriously
difficult to model and simulate. Many friction models contain V V V

a variety of nonlinear features such as discontinuities,
hysteresis, internal dynamics, and other complications. These
properties cause the friction models to be numerically stiff and Coulomb Sticktion Stribeck
therefore computationally cumbersome. For that reason, it
would be advantageous to efficiently simulate a model that (a) (b) (c)
captures key characteristics of friction. In this paper, we will Figure 1. Normalized friction force vs slip velocity. (a)
first present a brief summary of some classical friction models Coulomb, (b) Sticktion, and (c) Stribeck friction laws.

together with the LuGre friction model. Secondly, a simple
dynamic model is presented to analyze the characteristics of the If one starts from the assumption that the friction laws
LuGre friction model. Next, the governing equations of the depicted in Figure 1 properly reflect the behavior of sliding
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friction, the discontinuity presents a host of analytical and force is sufficient to prevent slip from occurring. See, for
computational challenges. Simulation of the time response example, [Ferri and Heck, 1997; Whiteman and Ferri, 1997].
requires very fine time steps to maintain accuracy in regions Depending on the outcome of this check, one either continues
where the slip velocity changes sign or where sticking occurs. to integrate the "slipping equations," or one switches to the use
Depending on the time-integration method used, it is even of "sticking equations," which model the system with a stuck
possible for numerical instabilities to develop. Two main interface. Variations of this idea have also appeared in the
strategies have been employed to deal with this problem. First, literature [Ferri and Heck, 1997, Karnopp, 19851. While this
numerous studies have sought to "smooth" or "regularize" the strategy alleviates the numerical stiffness problems associated
friction law in the vicinity of the discontinuity. For example, with smoothing the discontinuity, they replace it with another
the signum type nonlinearity depicted in Figure l(a), can be problem. As seen in Figure 4, the accuracy of the method
replaced with a saturation-type nonlinearity, as in Figure 2, or a hinges on accurate determination of the switching time. The
smoothly transitioning approximation as shown in Figure 3. In figure shows a transition from slipping to sticking, followed by
both cases, the infinite slope at v = 0 is replaced with a slope of renewed slip in the opposite direction. Due to errors in the
oraer 1/c, where e is small relative to some characteristic slip computational solution, this switching time could be "delayed"
velocity for the problem in question. Obviously, as s -- 0, the (or "advanced") by some small amount of time. Equivalently,
numerical stiffhess of the problem becomes worse and worse. delays could occur due to the discrete nature of the numerical
Consequently, time-simulation of friction-damped systems that solution.
experience finite periods of sticking are burdened with very
small time steps, necessitating high computation times in order X Computeddisplacement

to maintain stability and/or accuracy. ,
F A True displaceme nt

II% Compuited velo :ity

. V Delayed switching times

S, True velocity

T* it g times %

Figure 4. Delayed switching time.

Figure 2. Saturation approximation of signum nonlinearity. Of course, in reality, the physical friction process is not

discontinuous. Various models of friction have been proposed
F that address this shortcoming, by refining the behavior of the

interface when the slipping velocity is small or when it changes
sign. For example, "microslip" models allow small amounts of
displacement to occur during sticking. The most common such
microslip model is the Iwan-model, also termed the elastic-
perfectly plastic model [Ferni, 1995]. Conceptually, the model

V can be thought of as a spring in series with a Coulomb friction
element having friction force lpN. When the force in the spring
reaches a magnitude of pN, the force in the Iwan-model
saturates until the direction of slip reverses. Smooth versions of
this behavior have also been proposed, for example, the Dahl

Figure 3. Smooth approximation of signum nonlinearity, model [Dahl, 1976], the Valanis model [Gaul and Nitsche,
2001; Valanis, 1971], and Leuven Model [Swevers, at al, 2000;

A second approach to address simulation of systems with Lampaert, et al, 2002]. Recently, bristle models have been
discontinuous friction is to utilize a "switching strategy," or proposed that capture both the microslip and macroslip regimes
also known as an event-driven strategy [Pfeiffer and Glocker, of interfacial friction. Haessig and Friedland (1991) proposed a
1996]. In this approach, the system is simulated either using bristle model where individual bristles are treated separately,
the discontinuous friction law, or using a smoothed version separating as bonds are broken, and then re-adhering. The
thereof. However, when the slip velocity changes sign, one LuGre friction model, so named because it was developed
checks to determine whether the maximum-available friction jointly by researchers at the Lund Institute of Technology in

Sweden and the University of Grenoble, in France [Canudas de
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Wit, et al, 1995], is also based on a bristle interpretation of the FL (V, Z) = a0 Z + a1z + 0_2V (3)
frictional interface, but it treats the collection of bristles in an
aggregate fashion. The details of this model are presented where a, is a damping coefficient and q2 accounts for viscous

below, friction. For this study, the values used for the LuGre
parameters are listed in Table 1. Note that Vs is a very small

LUGRE MODEL slip velocity, below which the frictional interface can be
As discussed above, the LuGre model has become popular thought of as being "stuck" or undergoing microslip.

because it incorporates many of the observed features of
frictional behavior. For example, imbedded within the LuGre Table 1. LuGre Friction Model Parameters [Canudas de Wit,
model is the Stribeck effect, displayed in Figure 1(c). The et. al., 19951
Stribeck model exhibits a negative derivative with respect to Parameter Value Unit
slip velocity, for small levels of slip velocity. This is one of the (TO 105  N/rn
key features of friction that contributes to limit-cycle behavior
and stick-slip oscillations in frictional systems. Furthermore, a'l -v Ns/m

the LuGre model behaves like a linear spring/damper pair when a2 0.4 Ns/m
it is linearized for small motions. Fý 1 N

F, 1.5 N
Relative Velocity V, .001 m/s

x U
r K 7F

Figure 5. Description of the frictional interface in the LuGre FL(V.Z)

model. Figure 6. Stick-slip system. The parameters are M= 1 kg, K =
2 N/m, and U = 0.t m.

A qualitative description of the LuGre model is shown in
Figure 5. At the microscopic level, two surfaces make contact SYSTEM MODELING
at various asperities. These asperities are represented with To analyze the characteristics of the LuGre model, a
bristles, and the bristles deflect like a spring when there is a system proposed by Canudas de Wit, et al (1995) is used to
relative velocity between the two surfaces. The deflection of focus the present discussion. The system, shown in Figure 6,
the springs gives rise to the friction force. If the deflection is represents a mass, M, connected to a spring K that is being
sufficiently large, then the bristles will slip in a highly random pulled by a constant velocity, 0 = R. As the mass slides along,
manner because of the irregular surfaces. Although the the LuGre friction force, FL('JZ), opposes the motion of the
deflection of the bristles is random, the LuGre model only mass. The position of the mass is denoted by X and its velocity
considers the average deflection. The average deflection of the is V. Two first-order equations govern the motion of the mass:
bristles, Z, is modeled by the first-order differential equation X= V (4)

2=v- lVi Z (1) Vý=(KU-KX-FL(V,Z))/M (5)
G(V)

It is useful to nondimensionalize the equations governing the
where V is the relative velocity between the two surfaces and mass as well as that of the LuGre force by introducing the
GO') is a function that describes the Stribeck effect. The following terms:
function G(V) allows the LuGre model to accommodate a
higher static coefficient of friction than dynamic coefficient of =-KX V , = a __Z
friction: FC ' s Fc

G( _)_.{Fc +F Fe~''} ()KU =4K7,]--- r:O)nt (6a)G(V)= (2) U ,o
Cro Fc

where Fc is the kinetic friction force, Fs is the static friction
force, ao is the aggregate bristle stiffness, and Vs is the Stribeck
velocity. Finally, the LuGre friction force is given by
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a= KV , Fs - Fc , = K/lao bristle stiffness. Using the numerical values of Table 1, e is
a -cF FC equal to 2x10-5. The smallness of the parameter c is partially to

a U2 VS (6b) blame for the "numerical stiffness" of the system of equations.
= VS , s2 = V Numerical stiffness makes it difficult to simulate the response

Fc FC of the system, because it necessitates very small time steps to

When (6) is introduced into equations (4), (5), and (1), the ensure algorithm stability and accuracy. The problem is

following three equations are obtained: compounded when the system in question is more realistic,
such as a multi-degree-of-freedom structure with multiple

y. = ay 2  (7) frictional interfaces. As the present system is only single-
degree-of-freedom, it is possible to study the numerical

Y2 =(u-yl -fL(y2,y3))/a (8) stiffness problem analytically.
In order to examine the numerical stiffness of the LuGre

a- y2 ( dynamics, one can examine the Jacobian of the state dynamics:

where ' denotes a derivative with respect to nondimensional "' (
time, ;, and f2 Y (13)

fL(Y2,Y3)=Y3+Sl{Y2- y3Y +s2Y2. (0) = ,f Oy2 _y3

g(Y2 ) + 02(3 10f% 1 f 3
2 OYI19iY2 gy3Q

g(y2) = 1+yexp(-y 2 ) (11) where

Equations (7), (8), and (9) can be conveniently represented [ a 0
in state-space form: A= - -(s,+s 2 )/a-/ (14)

y'= f(y,u) (12) a/6 0

where y is the state vector [y, '2 Y3]r.

The function g dies out rapidly with y2, as shown in Figure 0 0 02{
7; g is approximately equal to I for [Y21 > 3. Also note that the _ exp-Y)_._____15
slope of g is zero at y2 = 0, and is approximately zero outside g 2 Sg"•.2,
the range Lv21 > 3. The magnitude of the slope is maximum aty2 0-oaY3/ "

= ± 1/,F2, implying that the dynamics can change rapidly when and
the velocity is in the "sticking range," defined to be [y21 < 1. 0 0 0] Y_(1

1.5 C(Y2) =0 0 si/a, } (16)

1.45- 
0 -al g

1.4 As it describes the "local dynamics" of the system, the
1.35- Jacobian is useful in analyzing the source of the numerical

stiffness when (12) is time integrated. In the case of explicit
numerical integration routines, the stability of the algorithm

1.25 depends on the size of the nondimensional time step, h. The

1.2 maximum allowable time step is inversely proportional to the
1.15- largest magnitude eigenvalue of J. As seen above, A has no

dependence on the state vector y. For sufficiently large Lv21, B
1.1 becomes independent of Y2, except for a dependence on the

1.05 sign of Y2. The matrix C, however, grows linearly with Ly2j,

I . ... . . .dominating matrices A and B for high slip velocities (21 >>
-5 -4 -3 -2 -1 0 1 2 3 4 10). Thus, an expression for the largest magnitude eigenvalue

y2 of J that holds asymptotically as Ly2v gets larger and larger can

Figure 7. LuGre function g versus Y2 using values in Table 1. be derived based on the nonzero eigenvalue of C:

It may be noted that equations (7), (8) and (9) are in A_ (J) = aJY2  (17)
standard, singular perturbation form [Kokotovic, et al, 1986]. eg
The stiffness ratio s =. K/ao (not to be confused with c in
Figures 2 and 3) is typically small, due to the relatively high
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It is seen that ýi= grows linearly with 1v21. Therefore, as the increases, this difference becomes less and less significant

velocity of the mass becomes large compared to the Stribeck when viewed as a percent of =`(J).

velocity, Vs, the maximum allowable time step becomes A number of conclusions can be drawn from Figure 8. It is

smaller. It is also seen that ,=,, is inversely proportional to e = seen that the system is relatively well conditioned for low

K/uo. Thus as the aggregate bristle stiffness uo0 grows larger, the velocities (&Y21 < 3), including the microslip region. The system

numerical stiffness problem worsens, especially during becomes more and more ill-conditioned as the slip velocity
episodes of high slip velocity. In dimensional terms, X,,a(J) = grows. This is in stark contrast to the regularization schemes
Vao/F sec". portrayed in Figures 2 and 3. When the discontinuity is

An alternate interpretation of (17) is obtained by smoothed in the vicinity of the zero-slip point, the system of
inspection of the LuGre'dynamics (9). If, over a small interval, equations are ill-conditioned for small velocities (microslip)
the nondimensionalized velocity (y2) is assumed to be constant, and become better conditioned as the slip velocity increases in
then the coefficients of (9) are constant over this interval, magnitude.
Subsequently, (9) becomes a linear first-order differential This contrast may appear at first to be counterintuitive,
equation with a time constant, T,: because it is at odds with the behavior of standard approaches

of friction modeling and simulation discussed in the
a, = a Y2 IY3 a Y2 (18) Introduction. Whether one smoothes the discontinuity or usesY3 =-Y2 -- Y3 =-Y 2 ---

-•-g(Y2) T, switching between sticking and slipping dynamical systems,
where the numerical problems are all located in the vicinity of small

= .g (19) slip velocities. In the LuGre model of friction, sticking and
+ 21 near-sticking conditions are where the system is relatively well

conditioned; ill-conditioning develops as the slipping velocity

From (19), it is evident that the time constant is equal to the gets larger.
inverse of the maximum eigenvalue given by (17). For very
low values of y2, the time constant is very large, indicating very
slow friction dynamics. As the velocity emerges from the - y3=+1

sticking range, Ly21 = 1, g falls off rapidly, decreasing the time Equation (17), asymptotic result

constant. For LY2j > 3, g(yz) is approximately I and T, decreases 600

inversely to Y2. As the time constant tends to zero, the
dynamics of the friction model are much faster than that of the
mechanical system. Qualitatively, this behavior can be
attributed to the movement of the bristles. During microslip, M
the bristles move in a slow, linear manner. When the critical ---.
limit is reached, the bristles "snap" back to place and cause an
increase in the speed of the friction dynamics. As the velocity 200

increases, the frequency of contact between the bristles
increases, therefore causing the bristles to move faster. The 100l

difference between the speed of the friction dynamics and that 0 .
of the mass-spring-system is what leads to numerical stiffness. -6 4 -2 0 2 4

This difference results in the requirement of small time steps y2

and the associated long computation times. Figure 8. Maximum magnitude eigenvalue vs Y2.
During sticking, which corresponds to zero values of both

Y2 and y3, the eigenvalues of J are given by A alone. By NUMERICAL SIMULATION RESULTS
inspection, one eigenvalue of A is identically zero. Using the To initially simulate the stick-slip system, the Matlab
friction parameters of Table 1, K = 2 N/m, and M = 1 kg, the function ode45 was used. The ode45 function is based on an
remaining two eigenvalues are -111.94 ± 193.57i, which explicit Runge-Kutta formula, the Dormand-Prince pair
correspond to a magnitude of X=,,(J) = 223.61 and a damping [Forsythe, et al., 1977; Kahaner, et al., 1989]. The routine uses
ratio of 0.50. For small-to-moderate values of Y2, one must a variable time step, based on specified tolerances: a relative
compute ;%ax(J) numerically. Due to the presence of B, ),, is a tolerance, RelTol, whose default value is lx10"3, and an
function of both y2 and y3. Also note that the matrix B absolute tolerance, AbsTol, whose default value is lx10"6.
describes sensitivity of the Jacobian to the high slope of the Figures 9 through 11 show the nondimensional state quantities
function g within the range lY2[ < 1. Figure 8 shows ).,ýx(J) while Figure 12 shows the nondimensional LuGre friction
versus y2 fory3 = -1. Also shown is the asymptotic expression force, fL(y 2,y5). In the case shown, RelTol = Ix104 , and AbsTol
for X ,,(J) given by (17). For small velocities, the bristle = 1x10"6. Note that the friction force behaves irregularly
displacement y3 produces a difference in the maximum during the stick-slip regions. This irregular behavior can be
eigenvalue from the asymptotic result. However, as 1Y2j attributed to the sudden change from the static friction force to
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the kinetic friction force. Further examination shows that at the
instant the system begins to slip, the friction force initially 1.5

decreases before increasing with increasing velocity. This
phenomenon is consistent with the Stribeck effect. Lastly, like
the elastic friction model, the friction force during the sticking
phase acts like a linear spring. 1

From Figures 9 and 10, the displacement and velocity are
fairly smooth and accurate, with results closely matching scaled
results from [Canudas de Wit, et. al., 1995]. The LuGre force,

on the other hand, exhibits a noticeable "ringing" in time o.5
intervals of high slip velocity. The ringing largely disappears
when RelTol and AbsTol are lowered to lx108 .

30
001,0 1 .5 2 .0 2 .5 3 10

Figure 11: y3 vs. r using ode45 with RelTol = lx04 and

2 AbsTol = lx10-6

1.55

0.5

O 5 10 15 20 25 30
tau 0.5

Figure 9: y, vs. r using ode45 with RelTol = Ix 104 and AbsTol
= lxO-6.

40, ,0

0 5 10 15 20 25 30

350 tau

30 Figure 12 :fL vs. r using ode45 with RelTol = lx10 4 and
AbsTol = lxl0"6

250

The reason for the ringing in the friction force is
uncovered by examining the Jacobian at each point along the

150- state trajectory. Figure 13 shows •,a(J) VS T from a more
accurate simulation using ode45 with RelTol = 1x10"7 and

100• 1AbsTol = 1xl0"7. It is seen that the time intervals in which the
so largest eigenvalue magnitudes occur is closely related to

occurrences of high slip velocities. Figures 14a shows a close
o 5 10 15 20 25 30 up of Q) (i)just as the mass transitions from microslip to

ta macroslip, and Figure 14b shows Xm, (J) just after the first

Figure 10:y 2 vs. r using ode45 with RelTol = Nx10
4 and interval of macroslip comes to an end. For comparison, the

AbsTol = x10-6. figures also show the asymptotic result calculated by Equation
(17). As the slip velocity increases, the asymptotic result (or
equivalently, the inverse of the time constant) agrees very
closely with X,,4J). However, it should be noted that in the
transition region, the inverse of the time constant significantly
under-predicts the true x(J).

6 Copyright © 2005 by ASME



xIS' The large size of Xm• (J) during periods of high slip
3 velocity is the major source of the ringing that is evident in the

LuGre friction force. However, the ringing that is present in the
2.5. state vector itself is far less pronounced. In fact, only the

bristle displacement Y3 displays any appreciable ringing during
2 high slip rates. Figure 15 shows a close up of Y3 during the

15 period of maximum slip. It is seen that the ringing in Y3
1.5 amounts to approximately 0.01% of the nominal value. The

ringing is amplified in the LuGre force because of the way that
E I jfL is calculated; in particular, the expression in parentheses in

(10) involves the subtraction of two terms that are large, and
0.5 almost exactly equal. Operations of this type are prone to

round-off errors during computation.
0 1 The nondimensionalization of the terms associated with the
0 5 10 15 20 25 30 LuGre friction model is very important. Due to the size of the

bristle stiffness, the displacement Z is orders of magnitude
Figure 13: Xax(J) vs r; from ode45 with RelTol = Ix10-7 and smaller than X and V. Consequently, 'direct integration of the

AbsTol = lxi0"7 dimensional system of equations is less accurate due to round-
400 off errors.

350-- asymptotic result 1.0003

300- 1.0002

250
20 1.0001

~200-

E 150

100

50. 0.0998

50

10.38 10.4 10.42 10.44 10.46 10.48 10.5 10.52 0.9997'
12.256 12.2561 12.2562 12.2563 12.2564 12.2565 12.2566 12.2567 12.256

tau tau

Figure 14(a): Maximum eigenvalue during the transition from Figure 15: Close-up of y3 vs T, ode45 with RelTol = I x 10-4 and
microslip to macroslip. AbsTol = lx 10-6.

4W COMPARISON OF INTEGRATION METHODS

Saymtic s To find the best strategies to simulate the stick-slip system,
several techniques were considered. Aside from using built-in

3W Matlab functions, the techniques included user-defined explicit
and implicit time integration methods. The main difference

3250 between explicit and implicit integration schemes is in the

200 formulation. Explicit schemes use past states to define the
current states, whereas implicit schemes define the current

S150 states using past and current results. Furthermore, one can
100 guarantee the stability of the result using implicit methods. As

a note, all computer simulations were done using Matlab 6.1 on
Wo a Pentium 4, 2.4 GHz computer. Also, the simulation time was

from 0 to 20 seconds.
0

14.48 14.5 14.52 14.54 14.56 14.58 14.6 14.62 14.64
tau Explicit Integration Methods

Although the use of a Matlab function was useful as a first
Figure 14(b): Maximum eigenvalue during the transition from attempt to solve the system, it was necessary to write a user-

macroslip to microslip. defined integration scheme to fully understand and control the

simulation process. Because of its popularity and efficiency,
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the 4th order Runge-Kutta method was chosen as the explicit dimensionalized friction forces at each instant in time. The
solver. Like the ode45 function, this Runge-Kutta method is an first error metric listed in Table 2 is simply the maximum of E
explicit, time-marching scheme with a time step, h, a local error over the duration of the simulation. The second error metric is
on the order of h5, and a global error on the order of h4 [Faires the root-mean-squared error, ERUs, is calculated by
and Burden, 1998]. Since the maximum allowable time step is
proportional to the inverse of the largest magnitude eigenvalue ERM=I TE2 dt (20)
of the Jacobian, a time step based on this value was used for the T
baseline simulation. From (17), ),a = 2.62x10 4 for the where T is the final time. Since the number of time steps was
maximum value of Ly2l in the simulation, which corresponds to different for each method, the data was interpolated from the
a minimum time constant of 3.82x10 5 . To best capture the baseline data set for comparison. Lastly, the simulation time is
dynamics of the system, a time step of 10-5 was used, which reported as a percentage to the baseline simulation time, which
was more than three times less than the minimum time is 165Is, or 27.5 minutes.
constant. Note that the time step used, h, is in nondimensional
form defined by h = owH, where H is the dimensional time Table 2. Comparison of Explicit Methods
step.Although the baseline simulation (h = 10-5) gave the best Simulation Time Error (N) Simulation Steps
results, it was not necessary to use such a small time step at all Method Step Max RMS Time (%)

times. From previous analyses, the dynamics of the system is
fast during periods of slip, but slow during microslip. Hence, it Kutta 10"1 n/a n/a 100 2.828e6
would be advantageous to base the time step based on the local (Baseline)
dynamics of the system. One way to vary the time step was to Runge-

define h based on the inverse of the maximum eigenvalue, as Kutta (113)T, 0207 7.46e-4 14.8 4.02061

shown in Figure 13. However, this would be cumbersome constant)
because finding the eigenvalues of the Jacobian at each time
step requires too many calculations. The added overhead for Rne a
such a technique would be prohibitive, especially for realistic Runge- 10" or
systems having a higher number of degrees of freedom. (Velocity) 0 .1

Another way to estimate the time step necessary to Runge-
simulate the system was to use the time constant, as defined by Kutta 10.1 3.98e-4 1.16e-6 1.14 2.829e4
(19). From Figures 14a and 14b, the inverse of the time (Constant) , I

constant agrees well with the maximum eigenvalue during * absolute tolerance =relative tolerance = 10'
moderate to high levels of slip. The periods where these values
do not agree are the transitional periods and during sticking. Table 2 shows that there is a significant improvement in
However, this disagreement was addressed by setting a the simulation time by switching the time step based on the
maximum time step such that the integration scheme remained time constant of the system. However, the maximum error
stable. For the system under consideration here, this maximum using this method is unacceptable (--14% error) and the number
time step was set at 10-3. During periods of slip, estimated as of steps required is still relatively large. The Runge-Kutta
T, < 0.02, the time step was set to one-third of the time method with h-switching based on the velocity performed
constant. Otherwise, the time step was set to 10-3. much better in terms of simulation time and number of steps,

To make the simulation more efficient, another method but its accuracy was the worst. The result using ode45 had the
based on the velocity was used to estimate the time step. best accuracy and a very short simulation time compared to the
Because the dynamics of the system change rapidly at the baseline. Finally, using the Runge-Kutta method with a
stick/stick transition periods, a small time step (104) was used constant time step of 10-3 produced errors comparable to the
in this region. Otherwise, the time step was set to 10-3. This ode45 method, but with the smallest simulation time and least
stick/slip transition region was defined as the range 0.1 _< Lvj < amount of steps. This last result is surprising since 10-3 is
5. roughly 26 times larger than the frictional time constant at the

Table 2 compares the different explicit methods in order of point of maximum slip velocity.
decreasing simulation time. In addition to the baseline case (4th Implicit Integration Methods
order Runge-Kutta with h = constant = 10-5), four other cases Despite moderate successes with the explicit methods,
are shown: 4th order Runge-Kutta with h switched based on the implicit integration schemes were used to simulate the stick-
time constant, ode45 with RelTol = AbsTol = 10's, 4th order slip system. The key advantage of the implicit integration
Runge-Kutta with h switched based on lY21, and 4th order methods is better stability characteristics versus the explicit
Runge-Kutta with h = constant = 10". Two different error methods. Therefore, it would be possible to use larger time
metrics were employed. First, the error, E, was computed by steps (than the explicit methods) to simulate the LuGre model,
taking the absolute value of the difference in the even during slip. However, the disadvantage of implicit
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methods is the need to iterate at each time step. This iteration Table 3. Comparison of Implicit Methods
is necessary to solve for simultaneous equations at each time
instant. Lastly, despite the improved stability characteristics, Simulation Time Error (N) Simulation Number
the accuracy of the implicit methods still depends upon the size Method Step Max RMS Time (%) of Steps

of the time step. Runge-
The first implicit method to be applied to the stick-slip Kutta 10.1 n/a n/a 100 2.828e6

system was the Trapezoidal method. This technique is effective (Baseline)
for solving stiff differential equations [Faires and Burden, Trapezoidal 5e-3 0.150 7.54e-3 2.25 5.658e3
1998]. An extension of the Trapezoidal method is the Radau- -01 .26
IIA method [Hairer and Wanner, 1991]. Both the Trapezoidal Radau-1lA
integration scheme and the Radau-IIA scheme can be expressed (Constant) 10" 9.33e-2 4.72e-4 1.08 2.830e3
in a common framework. At each time ti, two sets of nonlinear 10.2
equations must be solved for the unknown vectors, k, and k2: Radau-IIA or 0.497 5.90e-3 0.56 1.436e3

(Velocity) 0.02

ki =f (y(t1)+c. k, +c2 k2, u(t, +b, (21) Radau-llA 10.2
(Time or 0.490 7.20e-3 0.47 1.216e3

k2 = f (y(t,)+c3 k + c, k2, u(t, + h)) (22) Constant) 0.05

where k, and k2 are 3x1 vectors that approximate in some sense This shift occurred for both the explicit and implicit methods
the average dynamics over a time step. The value of the state that used a variable time step. Since the transitions in the
vector at the next time step is expressed in terms of k, and k2 as friction force occur very rapidly in time, even a small time shift
follows: in one simulation relative to the baseline result can give rise to

y(t, + h) = y0) + c3 k + c4 k 2  (23) very large maximum errors.
From Tables 2 and 3, it appears that the best choice to

For trapezoidal integration: simulate the stick-slip system is to use the Radau-IIA method

C1 = C2 = 0, C3 =c4 = h/2, bj = 0 (24) with a constant time step of 10-2. Surprisingly, the use of 4th
order Runge-Kutta with a constant time step of 10-3 also

For Radau-IIA: displayed a good balance between accuracy and efficiency. In
terms of simulation time, both the 4th order Runge-Kutta and

= 5h/12, c2 =-h/12, cs=3h/4, c4 =h/4, bl = hi3 (25) Radau-IIA methods are similar. The Runge-Kutta method has

As for the explicit methods, various schemes were errors two orders of magnitude better than the Radau-IIA

investigated for their accuracy and efficiency. The results of the scheme, however, the Radau-IIA requires an order of

implicit integration methods are summarized in Table 3. The magnitude fewer steps. Thus the best choice of integration

trapezoidal method was implemented with a constant time step scheme may depend on the users' preference for accuracy

of h = 0.005. The Radau-IIA method was compared using three versus speed, as well as on the availability of computer

different schemes for selection of h: h = constant = 10-2, h memory.

switched based on velocity, and h switched based on the time CONCLUSIONS
constant.

When compared to the explicit methods in Table 2, the The purpose of this study was to efficiently simulate a
implicit methods on average require less time and much fewer dynamic system having LuGre friction. The LuGre friction

integration steps. The primary reason for these improvements model was chosen because it incorporated many characteristics
is that larger time steps (than the explicit methods) could be of other friction models. To analyze the behavior of the LuGre
used to obtain an accurate solution. Although the equations of model, a SDOF spring-mass system sliding against a fixed
the LuGre model are numerically stiff, the implicit integration surface was considered. The equations of motion for this
schemes are well suited to solve them. system were converted to a nondimensional form for

Similar to the findings for the Runge-Kutta method, it is convenience as well as to prevent round-off errors in the

observed that the maximum error values for the variable time calculations. The spring-mass system was analyzed by
step methods were unacceptably large. A reason for the observing the linearized dynamics of the entire system as well
relatively large errors was that at the stick/slip transition as the time constant of the LuGre model alone. The analysis
regions, there was a shift in the solution compared to the shows that the friction dynamics can be very fast and therefore
baseline, numerically stiff during periods of high slip rate. Furthermore,

the dynamics change rapidly at stick-slip transitions. It is
found that the system dynamics are relatively well-conditioned
during periods of sticking, which stands in contrast to the
standard behavior of other friction models.
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The SDOF system was simulated using explicit and Gaul, L., and Lenz, J., 1998, "Active Damping of Space

implicit time integration methods. In general, the explicit Structures by Contact Pressure Control in Joints," Mechanical

methods required smaller time steps than the implicit methods. Structures and Machines, Vol. 26, No. 1, pp. 8 1-100.

Consequently, this requirement led to longer simulation times Gaul, L., and Nitsche, R., 2001, "The Role of Friction in

as well as a larger number of integration steps. However, the Mechanical Joints, "Applied Mechanics Reviews, Vol 54, No. 2,

explicit methods performed better in terms of accuracy. March, pp. 93-106.

Attempts to reduce the simulation time by varying the time Haessig, D.A., Jr., and Friedland, B., "On the modeling

steps performed poorly for both explicit and implicit methods. and simulation of friction", ASME Journal of Dynamic

This poor performance was attributed to a slight time shift in Systems, Measurement, and Control, 1991, Vol. 113, p. 354-
the solution, which caused relatively large errors. The best 362.
simulation methods were found to be the explicit Runge-Kutta Hairer, E., and Wanner, G., 1991, Solving Ordinary
and implicit Radau-IIA methods with constant time steps of 10- Differential Equations I: Stiff and Differential-Algebraic
3 and 10.2, respectively. Determining which is the best method Problems, Springer-Verlag, Berlin.
depends on one's need for better accuracy (Runge-Kutta) or Kahaner, D., Moler C., and Nash, S., 1989, Numerical
reduced memory usage (Radau-IIA). However, when Methods and Software, Prentice-Hall, New Jersey.
simulating a large dynamical system, using a larger time step Karnopp, D., 1985, "Computer Simulation of Stick-Slip
would greatly reduce the computation time. This advantage Friction in Mechanical Dynamic Systems," ASME J of
outweighs improved accuracy afforded by the Runge-Kutta Dynamic Systems, Measurement, and Control, Vol. 107, No. 1,
method. Therefore, for large systems with LuGre friction, the pp. 100-103.
Radau-IIA method appears to be the best method for numerical Kokotovic, P., Khalil, H., and O'Reilly, J., 1986, Singular
integration. Perturbation Methods in Control: Analysis and Design,

Natural extensions of this study would be to apply the Academic Press, London.
LuGre model to higher order systems with various types of Lampaert, V., Swevers, J., and Al-Bender, F., 2002,
boundary conditions and excitations. Ultimately, it is the goal "Modification of the Leuven Integrated Friction Model
of the authors to incorporate this friction model into multi-body Structure," IEEE Trans. on Auto. Control, Vol. 47, No. 4, April,
and finite element codes to solve large scale problems. pp. 683-687.
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SUMMARY

The purpose of this thesis is to explore two aspects of modeling the behavior of

joint friction in structures. The first aspect deals with the accurate and efficient

simulation of a simple system that incorporates the LuGre friction law. Energy transfer

and dissipation in a structural joint model is the second topic of this thesis. It is

hypothesized that friction could serve to pump energy from one frequency to higher

frequencies where it might be dissipated more quickly. Motivation for this study stems

from the need to have accurate models of high-precision space structures. Because

friction at connecting joints plays a major role in the damping capacity of the structure, a

good understanding of this mechanism is necessary to predict the vibratory response and

enhance the energy dissipation of the structure.

Simulation results of a dynamic system with LuGre friction show that the system

is relatively well-conditioned when the slip velocity is small, and ill-conditioned for large

slip velocities. Furthermore, the most efficient numerical method to simulate this system

is determined to be an implicit integration scheme. To study the energy transfer and

dissipation, two models of a jointed structure with friction are considered. Results from

the steady-state forced responses of the two structural systems indicate that friction

converted low frequency, single harmonic excitation to multi-harmonic response through

internal resonances. However, differences in energy dissipation results between the

models show that the response of a frictional system is highly sensitive to system

parameters and friction laws. Conclusions and suggestions for future research are also

discussed.

x



CHAPTER 1

INTRODUCTION

As the 2 1st century begins, new missions in space are being developed that push

the limits of science and technology. Whether the mission is to explore galaxies far away

or predicting tomorrow's weather, there is a need for high-tech, precision structures.

These structures must meet the harsh conditions of launch and the space environment as

well as operate at a high level of precision and accuracy. Therefore, disturbances and

uncertainties in the dynamics of the structure can be detrimental to the performance of the

spacecraft. The success of a mission depends on an accurate modeling or prediction of

the uncertainties as well as a good design to minimize the effects of the disturbances.

One form of disturbance to a spacecraft is mechanical vibration in the structure.

Because high levels of precision are required, vibrations along the structure are

undesirable. These vibrations come from a number of sources. During deployment or

positioning, vibrations can develop in large, built-up structures such as solar and sensor

arrays. Other sources of vibration include machinery on the spacecraft and thermal

differences along the structure. The vibrations propagate throughout the space structure

and can cause a myriad of problems such as misalignment of instruments, control

difficulties, structural instabilities, and component failures. Furthermore, significant

amounts of time, and consequently cost, are wasted waiting for vibrations to damp down

to acceptable levels. It is estimated that a robot manipulator system on a shuttle requires

a time equivalent to 15 shuttle flights to damp out to an amplitude of +1 inch [1].



Aside from reducing vibration, high precision space structures must meet

stringent levels of dimensional stability. For example, NASA's next generation gamma

ray telescope has strict requirements for the support structure. After deployment, the

structure must get into position and remain fixed and steady within an accuracy of four

millionths of an inch. Typically, other deployable structures require relatively lower

levels of precision, from three to four thousandths of an inch [2]. These requirements are

necessary because the support structure must function as metering structures for optical

instruments. Optical instruments are highly sensitive and can even require dimensional

stability to within a fraction of the wavelength of light.

To achieve high levels of precision during (and after) deployment and to reduce

mechanical vibration in space structures, it is important to examine the role of friction in

the structures. Specifically, friction at the connection joints in the structures is

considered. During deployment, friction can be a mechanism that leads to a locking of

the joint. After deployment, a microdynamic effect known as "microlurch" can occur in

a structure [3]. Microlurch is a residual change in the shape of a deployed structure,

which occurs after a transient dynamic event. This phenomenon can lead to the

misalignment of sensitive instruments. Analytical simulations and experimental data

suggest that microlurch is caused by the release of built-up strain energy within the joints

and latches of a deployed structure [4]. This release of energy is an artifact of stick-slip

instability due to load transfer through friction. Furthermore, it is thought that friction is

the cause of small, but noticeable spontaneous vibrations in space structures [5, 6].

Although friction is the cause of microdynamic instabilities in the structure, it can also
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play a positive role in the larger, global dynamics of the structure. The next section

describes the role of friction in the damping capacity of large, built-up structures.

1.1 Frictional Damping in Built-up Structures

To reduce vibration in space structures, there are several solutions.' One solution

is to make the structure more rigid to prevent excessive vibration. However, rigid

structures are expensive and heavy, which significantly increase the costs and resources

necessary to launch the structure. Another way to reduce vibration is to improve the

damping capacity of the space structures. This improvement could be achieved by

studying the role of friction at the connecting joints in the structure.

Friction in connecting joints plays an important role in the damping capacity of

built-up structures. It is estimated that as much as 90% of mechanical energy loss in

space structures is due to dry friction at the connecting joints [7, 8]. Many techniques

have been developed to use friction to increase damping at the joints. Ferri and Heck

analytically explored damping enhancements using passive and active joints [9].

Through simulation results, Gaul and Nitsche showed an increase in damping

performance using a semi-active friction damper at the joint [ 10]. A review of the

research done on the effects of joint friction on structural damping may be found in [11].

Although there have been many studies on the effects of joint friction on

damping, an accurate prediction of how much damping one can expect from a given

system or design is a topic of much research. To add to the complexity of the problem,

experimental evaluation of a structure's damping is difficult because the structure will

operate in a zero gravity environment. In a series of experimental studies, Folkman et al.
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found that the loss factor of a truss structure depended on the structure's orientation and

the amplitude of vibration [12, 13]. Furthermore, some results showed a linear envelope

of decay while others exhibited an exponential-like decay.

Because an experimental estimate of damping for a space structure is difficult,

there is an emphasis on the development and simulation of analytical joint models.

Although difficult, an important challenge to researchers is to develop analytical models

that capture the full range of observed behaviors of joint friction. A number of

researchers have developed simplified models to try to explain the complicated damping

characteristics of a realistic trust structure. For example, models of a crude sleeve-joint

as well as a nonlinear sleeve-joint have shown that variable normal forces in a frictional

joint can give rise to mostly "linear" structural damping [14, 15]. In such cases, the free

response is characterized by exponential-like (rather than linear) envelopes of decay.

Rather than focusing on characterizing the damping of a complex built-up

structure, this thesis will focus on two aspects of modeling the behavior of joint friction.

The first aspect deals with the analysis and simulation of an advanced friction model.

Since the nature of the friction law has a significant impact on the behavior ofjoint

friction, a good friction model is necessary to predict the dynamic and microdynamic

responses of the structure. Furthermore, frictional systems are difficult to simulate due to

numerical difficulties. A discussion of some friction models and simulation difficulties is

presented in Section 1.2.

The second topic treated in this thesis is the phenomenon of "energy pumping"

from one part of a structure to another. Moreover, the concept of energy pumping also
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concerns the transfer of energy from low-frequency vibratory modes to higher frequency

modes. Section 1.3 discusses these phenomena in greater detail.

1.2 Friction Modeling and Simulation

Although the concept of friction is easily understood, it is notoriously difficult to

model and simulate. Many friction models contain a variety of nonlinear features such as

discontinuities, hysteresis, internal dynamics, and other complications. These properties

cause the friction models to be numerically stiff and therefore computationally

cumbersome. For that reason, it would be advantageous to efficiently simulate a model

that captures key frictional behavior from experiments and from other friction models.

Numerical difficulties associated with simulation of frictional systems are well

documented [16, 17]. The basic problem is the numerical stiffness of such systems.

Models of friction derived from the Coulomb friction paradigm suggest that the friction

force changes "discontinuously" as the direction of interfacial slip changes. Figure 1.1

shows some typical sketches of friction force versus slip velocity. It should be noted that

"sticking" of the frictional interface is characterized by zero slip velocity; therefore, it is

not uncommon for the frictional interface to spend intermittent and finite periods of time

at zero slip velocity, where the friction law is discontinuous.
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Figure 1.1. Normalized friction force vs slip velocity. (a) Coulomb,
(b) Sticktion, and (c) Stribeck friction laws.

If it is assumed that the friction laws depicted in Figure 1.1 properly reflect the

behavior of sliding friction, the discontinuity presents a host of analytical and

computational challenges. Simulation of the time response requires very small time steps

to maintain accuracy in regions where the slip velocity changes sign or where sticking

occurs. Depending on the time-integration method used, it is even possible for numerical

instabilities to develop. Two main strategies have been employed to deal with this

problem. First, numerous studies have sought to "smooth" or "regularize" the friction

law in the vicinity of the discontinuity. For example, the signum type nonlinearity

depicted in Figure 1.1 (a), can be replaced with a saturation-type nonlinearity, as in Figure

1.2, or a smoothly transitioning approximation as shown in Figure 1.3. In both cases, the

infinite slope at zero velocity is replaced with a slope of order 1k/, where e is small

relative to some characteristic slip velocity for the problem in question. As e approaches

zero, the numerical stiffness of the problem becomes poorer. Consequently, time-

simulation of friction-damped systems that experience finite periods of sticking are
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burdened with very small time steps, necessitating high computation times in order to

maintain stability and/or accuracy.

F

Figure 1.2. Saturation approximation of signum nonlinearity.

F

Figure 1.3. Smooth approximation of signum nonlinearity.
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A second approach to address simulation of systems with discontinuous friction is

to utilize a "switching strategy," or also known as an event-driven strategy [18]. In this

approach, the system can be simulated using a discontinuous friction law, a saturation

approximation, or a smooth approximation. However, when the slip velocity changes

sign, a check is performed to determine whether the maximum-available friction force is

sufficient to prevent slip from occurring [19, 20]. If the friction force is large enough to

prevent slip, then a set of "sticking equations" (which model the system with a stuck

interface) are integrated. Otherwise, integration of the "slipping equations" is continued.

Details of this procedure are discussed in Chapter 3.

While the switching strategy alleviates the numerical stiffness problems

associated with smoothing the discontinuity, another problem arises. As seen in Figure

1.4, the accuracy of the method hinges on accurate determination of the switching time.

Figure 1.4 shows a transition from slipping to sticking, followed by renewed slip in the

opposite direction. Due to errors in the computational solution, this switching time could

be "delayed" (or "advanced") by some small amount of time. Equivalently, delays could

occur due to the discrete nature of the numerical solution.
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Figure 1.4. Delayed time of the switching strategy.

In reality, the physical friction process is not discontinuous. Various models of

friction have been proposed that address this shortcoming by refining the behavior of the

interface when the slipping velocity is small or when it changes sign. For example,

"microslip" models allow small amounts of displacement to occur during sticking. A

common microslip model is the Iwan-model, also termed the elastic-perfectly plastic

model [21]. Conceptually, the model can be thought of as a spring in series with a

Coulomb friction element having friction force ^A, where/y is the coefficient of friction

and N is the normal force. When the force in the spring reaches a magnitude of AM, the

force in the Iwan-model saturates until the direction of slip reverses. Smooth versions of

this behavior have also been proposed. Examples of friction models with smooth

microslip behavior include the Dahl model [22], the Valanis model [23, 24], and the

Leuven model [25, 26]. Recently, bristle models have been proposed that capture both

the microslip and macroslip (sliding) regimes of interfacial friction. Haessig and

Friedland proposed a bristle model where individual bristles are treated separately,
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separating as bonds are broken, and then re-adhering [27]. The LuGre friction model, so

named because it was developed jointly by researchers at the Lund Institute of

Technology in Sweden and the University of Grenoble in France [28], is also based on a

bristle interpretation of the frictional interface. However, this model treats the collection

of bristles in an aggregate fashion.

The previous discussion only surveyed a small sample of the number of friction

models in the literature. Applications of the friction models vary widely depending on

the type and complexity of the system being simulated. Of the different friction models

discussed, several have been used to study friction at structural joints. Two of the

models, the Valanis model and the LuGre model, are discussed in further detail in

Chapter 2. The LuGre friction model is a promising model because it captures both

sticking and sliding regimes of interfacial friction. Similarly, the Valanis model shows

potential because it agrees well with experimental results of friction in a joint. A

comparison of the Valanis model to the LuGre model is made in Chapter 2.

Once the complexities and simulation challenges of a frictional system are

understood, the effects of friction on joint behavior are investigated. The next section

explores the energy transfer and dissipation due to friction at a connecting joint.

1.3 Energy Transfer and Dissipation

The second aspect of this thesis is the passive damping capabilities of joint

friction. It is understood that joint friction affects damping by converting mechanical

energy into heat by rubbing. Less obvious, however, it that friction can serve as a

catalyst for energy pumping. The phenomenon of energy pumping is defined as the
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controlled one-way transfer of vibrational energy to a passive nonlinear sink, where the

energy localizes and dissipates over time [29]. Through stick-slip oscillations, it is

hypothesized that joint friction can be a means to pump low-frequency vibrational energy

to high-frequency vibrational energy, which can excite higher modes in the system. In a

finite element simulation of a truss structure, Onoda et al. found that backlash

nonlinearity at the joint transferred vibrational energy from lower modes to higher modes

[30]. Since energy can be dissipated faster at higher frequencies, this transfer of energy

to excite higher resonances may serve as a tool for increased energy dissipation. Chapter

3 explores this concept and applies it to a joint structure modeled as a simple 3 degrees-

of-freedom (3DOF) system. Simulations of the steady-state and free responses of the

system are performed to demonstrate the feasibility of the hypothesis.

The concepts of energy transfer and dissipation can be extended to a more

complicated model. In Chapter 4, the structure is modeled as a continuous beam

connected to a single degree-of-freedom (SDOF) system, with the connecting element

modeled as a friction interface. An investigation of a system with a similar configuration

shows the presence of internal resonances in the response of the beam [20, 31 ]. These

internal resonances are caused by stick-slip oscillations, which excite modes at higher

frequencies than the excitation frequency. In Chapter 4, the excitation of internal

resonances in free and forced response is discussed. As in the 3DOF system, it is

hypothesized that the vibrational energy transferred to the higher modes should dissipate

faster. Simulation of the responses of the beam system is performed to validate these

claims.
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1.4 Outline of Thesis

This thesis deals with two topics concerning the modeling of joint friction

behavior. Discussed in Chapter 2, the first topic deals with the modeling of friction and

simulation strategies for frictional systems. Furthermore, Chapter 2 explores the best and

most efficient simulation strategies to simulate a simple dynamical system with LuGre

friction. Numerical difficulties associated with the LuGre model are examined by

looking at the eigenvalues and time constants of the linearized system. With a better

understanding of the dynamics of the system, the performances of several numerical

integration schemes are evaluated. These schemes include both explicit and implicit

numerical methods.

The second topic concerns the energy transfer and dissipation in systems with a

frictional interface. Chapters 3 and 4 explore these concepts by simulating the responses

of jointed structures modeled as dynamical systems. In Chapter 3, the energy transfer

among subsystems of a discrete, 3DOF system is studied. Additionally, a parametric

analysis of the energy dissipation in the system is performed by tuning one of the

subsystems to the stick-slip frequencies. Chapter 4 extends the results of Chapter 3 to a

jointed structure represented by a continuous model. Likewise, the responses of this

system are simulated to study the energy transfer and dissipation. Furthermore, Chapter

4 examines the sensitivity of the frictional system to changes in system parameters.

Lastly, concluding remarks as well as recommendations for future studies and research

are made in Chapter 5.

The research presented in this Thesis provides a framework to study the behavior

of joint friction. The selection and accurate simulation of a friction law could lead to a
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more precise evaluation of the performance of a space structure. Application of the

studies in Chapters 3 and 4 could serve as a preliminary guide to model and simulate

specific joint structures. Ultimately, it would be desirable to develop design rules that

lead to enhanced damping levels of the global structural system.
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CHAPTER 2

FRICTION MODELING AND SIMULATION

Friction plays an important role in the dynamics of large, built-up structures such

as space structures. Specifically, dry friction at connecting joints contributes to the

majority of the damping capacity of the system. Furthermore, joint friction can lead to

the locking of joints during deployment of booms and contribute to microdynamic

instabilities after deployment. Since the nature of the friction law has a significant

impact on the behavior ofjoint friction, a good friction model is necessary for the design,

control, and analysis of the system.

Simulation difficulties in frictional systems are caused by the numerical stiffness

of the systems. The stiffness is especially pronounced when the friction force changes

discontinuously as the velocity of the slip interface changes direction. As discussed in

Chapter 1, the problem can be somewhat alleviated through the use of "smoothed"

versions of the friction law and/or adapting a switching strategy. However, this chapter

explores an alternate approach.

In reality, the discontinuity in the friction law is an artifact that originates from

modeling simplifications. Chapter 1 mentioned several more complicated friction models

that have been proposed to capture the true interfacial forces in both regimes of microslip

and macroslip. These models allow the transition between microslip and macroslip to be

smooth and not discontinuous. They include the Dahl model, the Leuven model, the

Valanis model, and the LuGre model; the later two are investigated in this chapter. The

LuGre model is promising because it contains key features from other friction models
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and it captures both sticking and sliding regimes of interfacial friction. The Valanis

model is promising because it agrees well with experimental results of friction at a joint.

In this chapter, a description of the Valanis and LuGre friction models is given

first. Secondly, a simple dynamic model is proposed to analyze the characteristics of the

LuGre friction model. This model is then modified slightly to compare the LuGre

friction model to the Valanis model. Next, the governing equations of the LuGre model

are analyzed by using nondimensional terms and observing the dynamics of the linearized

system. The dynamic system is then simulated using several explicit and implicit

numerical integration techniques. Finally, conclusions are made concerning the most

efficient technique to simulate the LuGre friction model.

2.1 Valanis Model

Often, the selection of a friction model is motivated by an observed response in a

system. In one study, the force-displacement hysteresis response in a bolted lap joint was

represented using the Valanis friction model [231. Comparisons between experimental

and simulated results showed good agreement between the Valanis model and the

measured joint behavior. For the Valanis model, the rate of change in the generalized

friction force, Fv, is given by

eoV[I + A-sgn(V)(e,X - Fv)]

1 + AK-sgn(V)(e,X - Fv)
eo
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where Xis the relative displacement, V is the relative velocity, and an overdot denotes a

derivative with respect to time. The function sgn(V) is the signum function and is defined

as V4 M1 when V:# 0. The dimensionless parameter A is defined as

2 = e° (2.2)

ao(1- ee

The stiffness parameters eo, et, and a0 can be identified from the closed hysteresis loop in

Figure 2.1. The dimensionless parameter K indicates the smoothness of the stick-to-slip

transition. A value of 0.99 is for a sharp transition, whereas a value less than 0.99 cause a

smooth transition. For the system shown in Figure 2.1, the K value is 0.01.
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2.2 LuGre Model

As discussed previously, the LuGre model has become popular because it

incorporates many of the observed features of frictional behavior. For example,

imbedded within the LuGre model is the Stribeck effect, displayed in Figure 1.1 (c). For

small levels of slip velocity, the friction force exhibits a negative derivative with respect

to slip velocity. This negative slope is one of the key features of friction that contributes

to limit-cycle behavior and stick-slip oscillations in frictional systems. Furthermore, the

LuGre model behaves like a linear spring/damper pair when it is linearized for small

motions.

Relative Velocity

Figure 2.2. Description of the frictional interface in the LuGre model.

A qualitative description of the LuGre model is shown in Figure 2.2. At the

microscopic level, two surfaces make contact at various asperities. These asperities are

represented with bristles, and the bristles deflect like a spring when there is a relative

velocity between the two surfaces. The deflection of the springs gives rise to the friction

force. If the deflection is sufficiently large, then the bristles will slip in a highly random

manner because of the irregular surfaces. Although the deflection of the bristles is
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random, the LuGre model only considers the average deflection. The average deflection

of the bristles, Z, is modeled by the first-order differential equation

2=v- IVI z (2.3)
G(V)

where V is the relative velocity between the two surfaces and G(V) is a function that

describes the Stribeck effect. The function G(V) also allows the LuGre model to

accommodate a higher static coefficient of friction than dynamic coefficient of friction:

G(V) =1{Fc +(Fs -Fc)exp{(VJ (2.4)

where Fc is the kinetic friction force, Fs is the static friction force, ao is the aggregate

bristle stiffness, and VS is the Stribeck velocity. Finally, the LuGre friction force is given

by

FL (V,Z) = ooZ + a, -2 +o 2V (2.5)

where a, is a damping coefficient and '2 accounts for viscous friction. For this study, the

values used for the LuGre parameters are listed in Table 2.1. Note that Vs is a very small

slip velocity, below which the frictional interface can be thought of as being "stuck" or

undergoing microslip.
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Table 2.1. LuGre Friction Model Parameters [28]

Parameter Value Unit

CO 105  N/m

al ýi Ns/m

C2 0.4 Ns/m

Fý 1 N

F, 1.5 N

V1 .001 m/s

As discussed in Section 2.1, the Valanis model agreed well with an experimental

result of a bolted lap joint. Therefore, a comparison was made between the Valanis

model and the LuGre model. However, an additional stiffness term is needed in the

LuGre model because the stiffness of the bolted lap joint is included in the Valanis

model, but not in the LuGre model. If a stiffness term equivalent to e, in the Valanis

model is added to the LuGre friction force in (2.5), then the LuGre model can exhibit the

Valanis hysteresis loop shown in Figure 2.1. Figure 2.3 shows the hysteresis of the

modified LuGre model and the Valanis model. Parameters of the LuGre model were

varied to get the best fit.
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Figure 2.3. Hysteresis loops for the modified LuGre and the Valanis models.

From Figure 2.3, it is seen that the LuGre model can approximate the Valanis

model well. Because the LuGre model can exhibit both classical frictional behavior

(Stribeck effect) as well as experimental results, it is a good candidate for further

investigation.

2.3 System Modeling and Analysis

To analyze the characteristics of the LuGre model, a system proposed by Canudas

de Wit, et al is used to focus the present discussion [28]. The system, shown in Figure

2.4, represents a mass, M, connected to a spring K that is being pulled by a constant

velocity, 0 = R. As the mass slides along, the LuGre friction force, FL(VZ), opposes the

motion of the mass. The position of the mass is denoted by X and its velocity is V. Two

first-order, differential equations govern the motion of the mass:
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X=V (2.6)

V=(KU-KX-FL(V,Z))/M (2.7)

x UW

FL(V,Z)

Figure 2.4. Stick-slip system (M= 1 kg, K= 2 N/m, and U= 0.1t m).

It is useful to nondimensionalize the equations governing the mass as well as that

of the LuGre force by introducing the following terms:
KY V cr0oZ KU

Y1 = , .. .. , u=K , on= rKIM r=,- nt (2.8a)
FC VS Fc FC

K Vs , =Fs - FC , = l' s rl=' VS S2 02 VS
coF Fs Fc YV Fc (2.8b)

There are several points to notice from the nondimensional terms. First, the time is

expanded into nondimensional terms by the natural frequency of the stick-slip system.

Secondly, velocity is normalized to the Stribeck velocity, which is considered to be the

threshold of sticking. Microslip occurs when the II1 is below Vs; and conversely,

macroslip happens when I J1 is above Vs. Lastly, the stiffness ratio between the system

and the friction model, 6 (not to be confused with s in Figures 1.2 and 1.3), is typically

small due to the relatively high bristle stiffness.
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When (2.8) is introduced into Equations (2.6), (2.7), and (2.3), the following three

equations are obtained:

y = ay2  (2.9)

Y2' = (u -y-fL(Y21Y23))la (2.10)

Y=ay-a IY2 (2.11)

3 Y= -g(Y 2)

where' denotes a derivative with respect to nondimensional time, r. The friction force,

FL, and the function G(V) are also converted nondimensional forms as follows:

fL(Y2,Y3)=Y3+Sl Y2 g(-Y2 )Y3 +s 22Y 2  (2.12)

(_ 2 .

g(Y2 )=1 + yexp(-y 2). (2.13)

Equations (2.9), (2.10), and (2.11) can be conveniently represented in state-space form:

y' = f(y, u) (2.14)

where y is the state vector Lv, Y2 y3]T. The nondimensionalization of the terms associated

with the LuGre friction model is very important. Due to the size of the bristle stiffness,

the displacement Z is orders of magnitude smaller than X and V. Consequently, direct

integration of the dimensional system of equations is less accurate due to round-off

errors.

The analysis the dynamics of the stick-slip system began with examining the

function g(y2), as shown in Figure 2.5. This function changes rapidly around y 2 = 0 and

is approximately equal to I for [y2l > 3. Also, the slope of g is zero aty2 = 0 and is

approximately zero outside the range Lv21 > 3. The magnitude of the slope is maximum at
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=I21 1/iF2 (or 0.707), implying that the dynamics can change rapidly when the velocity is

in the "sticking range," defined to be [v2r < 1.
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Figure 2.5. LuGre function g versus y2 using values in Table 1.

It may be noted that equations (2.9), (2.10) and (2.11) are in standard, singular

perturbation form [32]. Using the numerical values of Table 2.1, the stiffness ratio

between the system and the friction model, e, is equal to 2x10-5. The smallness of the

parameter c is partially to blame for the "numerical stiffness" of the system of equations.

Numerical stiffness makes it difficult to simulate the response of the system because it

requires very small time steps to ensure algorithm stability and accuracy. The problem is

compounded when the system in question is more realistic, such as a multi-degree-of-

freedom (MDOF) structure with multiple frictional interfaces. As the present system is
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only single-degree-of-freedom (SDOF), it is possible to study the numerical stiffness

problem analytically.

In order to examine the numerical stiffness of the LuGre dynamics, one can

examine the Jacobian of the state dynamics:

af af af1
0Y1 Y2 'Y3

= af2 af2 a =A +B(Y2 ,Y 3 )+C(Y2 ) (2.15)O'Y I0,'2 0,Y3
af3  af3  af3
0Y1 aY2 'Y3

where

0a 01
A= -Ila -(s+s2)/a -l/a (2.16)

0 a/E 0

0 01(2 ~ ( _ 2Byy)= sly 3 /[o 0 g + 2rYyexp(-Y•)l ~ , (.7
g(Y2'Y3[ 2 Sgn(Y2), (2.17)

0 -ay 3/6 0- g

and

[00 0 YL21
C(Y2) = 0 0 S1  l 1I (2.18)

0 0 -ale-lg

Because the Jacobian characterizes the local, linearized dynamics of a system, it is useful

in analyzing the source of the numerical stiffness when (2.14) is time integrated. If the

Jacobian was evaluated at each instant in time, insight can be gained into the local

dynamics of (2.14), which would be of prime importance in numerical simulations. In

particular, the eigenvalues of J are important because they represent the poles of the
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dynamic system. These values determine how fast the system is behaving, and therefore

the maximum allowable time step to integrate the system.

In the case of explicit numerical integration routines, the stability of the algorithm

depends on the size of the nondimensional time step, h. The maximum allowable time

step is inversely proportional to the largest magnitude eigenvalue of J. As seen in (2.16),

A has no dependence on the state vector y. From (2.17), the negative term in the

exponential function causes B to become independent of y2 for sufficiently large tY21.

However, B is still dependent on the sign of y2. The matrix C, however, grows linearly

with [y21, dominating matrices A and B for high slip velocities (Ly21 >> 10). Thus, an

expression for the largest magnitude eigenvalue of J that holds asymptotically as [Y21 gets

larger and larger can be derived based on the nonzero eigenvalue of C:

,A.. (J) = afY2[ (2.19)6 g

It is seen that 2,,.., grows linearly with [y21. Therefore, as the velocity of the mass

becomes large compared to the Stribeck velocity, Vs, the maximum allowable time step

becomes smaller. It is also seen that 2m, is inversely proportional to e = K/uo. Thus as

the aggregate bristle stiffness co grows larger, the numerical stiffness problem worsens,

especially during episodes of high slip velocity. In dimensional terms, Amo(J) = Vol/F,

sec 1.

An alternate interpretation of (2.19) is obtained by inspection of the LuGre

dynamics (2.11). If, over a small interval, the nondimensionalized velocity (Y2) is

assumed to be constant, then the coefficients of(2.11) are constant over this interval as

well. Subsequently, (2.11) becomes a linear first-order differential equation with a time

constant, T,:
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a a 1Y21 Y3:a Y
Y3 =Y2 g Y3 Y2 (2.20)

9 e(Y 2 ) T

where

T Eg (2.21)
T ajy 21

From (2.21), it is evident that the time constant is equal to the inverse of the maximum

eigenvalue given by (2.19). For very low values of y2, the time constant is very large,

indicating very slow friction dynamics. As the velocity emerges from the sticking range,

1v21 z 1, g falls off rapidly, decreasing the time constant. For [Y21 > 3, g(y2) is

approximately I and T, decreases inversely to y2. As the time constant tends to zero, the

dynamics of the friction model are much faster than that of the mechanical system.

Qualitatively, this behavior can be attributed to the movement of the bristles. During

microslip, the bristles move in a slow, linear manner. When the critical limit is reached,

the bristles "snap" back to place and cause an increase in the speed of the friction

dynamics. As the velocity increases, the frequency of contact between the bristles

increases, therefore causing the bristles to move faster. The difference between the speed

of the friction dynamics and that of the mass-spring-system is what leads to numerical

stiffness. This difference results in the requirement of small time steps and the associated

long computation times.

During sticking, which corresponds to small values of both y2 and y3, the

eigenvalues of J are given by A alone. By inspection, one eigenvalue of A is identically

zero. Using the friction parameters of Table 2.1, K = 2 N/m, and M = 1 kg, the remaining

two eigenvalues are -111.94 ± 193.57i, which correspond to a magnitude of kmax(J) =
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223.61 and a damping ratio of 0.50. For small-to-moderate values of y2, one must

compute Ax(J) numerically. Due to the presence of B, Amx is a function of both Y2 and

y3. Also note that the matrix B describes sensitivity of the Jacobian to the high slope of

the function g within the range 1y2l < 1. Figure 2.6 shows Am•(J) versus y2 fory 3 = ±1.

Also shown is the asymptotic expression for Am(J) given by (2.19). For small

velocities, the bristle displacementy 3 produces a difference in the maximum eigenvalue

from the asymptotic result. However, as 1y2l increases, this difference becomes less and

less significant when viewed as a percentage of Am,(J).

A number of conclusions can be drawn from Figure 2.6. It is seen that the system

is relatively well conditioned for low velocities (Qy21 < 3), including the microslip region.

The system becomes more and more ill-conditioned as the slip velocity grows. This is in

stark contrast to the regularization schemes portrayed in Figures 1.2 and 1.3. When the

discontinuity is smoothed in the vicinity of the zero-slip point, the system of equations

are ill-conditioned for small velocities (microslip) and become better conditioned as the

slip velocity increases in magnitude.

This contrast may appear at first to be counterintuitive, because it is at odds with

the behavior of standard approaches of friction modeling and simulation discussed in

Chapter 1. Whether one smoothes the discontinuity or uses a switching between sticking

and slipping dynamical systems, the numerical problems are all located in the vicinity of

small slip velocities. In the LuGre model of friction, sticking and near-sticking

conditions are where the system is relatively well conditioned; ill-conditioning develops

as the slipping velocity gets larger.
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Figure 2.6. Maximum magnitude eigenvalue vsy 2.

2.4 Numerical Simulation Results

To initially simulate the stick-slip system, the Matlab function ode45 was used.

The ode45 function is based on an explicit Runge-Kutta formula, the Dormand-Prince

pair [33, 34]. The routine uses a variable time step based on specified tolerances: a

relative tolerance, RelTol, whose default value is 10-3 , and an absolute tolerance, AbsTol,

whose default value is 10-6. Figures 2.7 through 2.9 show the nondimensional state

quantities while Figure 2.10 shows the nondimensional LuGre friction force,fL(y2,Y3). In

the case shown, the relative and absolute tolerances are 10-4 and 1006, respectively. Note

that the friction force behaves irregularly during the stick-slip regions. This irregular

behavior can be attributed to the sudden change from the static friction force to the

kinetic friction force. Further examination shows that at the instant the system begins to
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slip, the friction force initially decreases before increasing with increasing velocity. This

phenomenon is consistent with the Stribeck effect. Lastly, like the elastic-plastic friction

model, the friction force during the sticking phase acts like a linear spring.

From Figures 2.7 and 2.8, the nondimensional displacement (y]) and velocity (y2)

are fairly smooth and accurate, with results closely matching scaled results from [28]. On

the other hand, the LuGre force, shown in Figure 2.10, exhibits a noticeable "ringing" in

time intervals of high slip velocity. The ringing largely disappears when the RelTol and

AbsTol values are lowered to 10-8.

3

2.5

2-

;1.5-

0.5

01
0 5 10 15 20 25 30

tau

Figure 2.7. Nondimensional position vs. rusing ode45 with RelTol = 104 and AbsTol =

106.
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Figure 2.8. Nondimensional velocity vs. r using ode45 with RelTol = 10-4 and AbsTol
10"6.
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Figure 2.9. Nondimensional bristle displacement vs. r using ode45 with RelTol = 104

and AbsTol = 10-6.
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Figure 2.10. Nondimensional friction force vs. r using ode45 with RelTol = 104 and
AbsTol = 10-6.

The reason for the ringing in the friction force is uncovered by examining the

Jacobian at each point along the state trajectory. Figure 2.11 shows 2 max(J) versus ' from

a more accurate simulation using ode45 with RelTol = 10-7 and AbsTol = 10-7. It is seen

that the time intervals in which the largest eigenvalue magnitudes occur is closely related

to occurrences of high slip velocities. Figures 2.12(a) shows a close up of),,a (J) just as

the mass transitions from microslip to macroslip, and Figure 2.12(b) shows m (J) just

after the first interval of macroslip comes to an end. For comparison, the figures also

show the asymptotic result calculated by Equation (2.19).
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Figure 2.11. Xma(J) vs T from ode45 with RelTol = 0-7 and AbsTol = 107.
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Figure 2.12. Maximum eigenvalue during the transition from (a) microslip to macroslip
and (b) macroslip to microslip.

The large size of2,m• (J.) during periods of high slip velocity is the major source

of the ringing that is evident in the LuGre friction force. However, the ringing that is

present in the state vector itself is far less pronounced. In fact, only the bristle

displacement y3 displays any appreciable ringing during high slip rates. Figure 2.13

shows a close up of y3 during the period of maximum slip. It is seen that the ringing in Y3

amounts to approximately 0.01% of the nominal value. The ringing is amplified in the

LuGre force because of the way thatfL is calculated; in particular, the expression in

parentheses in (2.12) involves the subtraction of two terms that are large, and almost

exactly equal. Operations of this type are prone to round-off errors during computation.
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Figure 2.13. Close-up of y3 vs -r using ode45 with RelTol = 10-4 and AbsTol = 10-6.

2.5 Comparison of Integration Methods

To find the best strategies to simulate the stick-slip system, several techniques

were considered. Aside from using built-in Matlab functions, the techniques included

user-defined explicit and implicit time integration methods. The main difference between

explicit and implicit integration schemes is in the formulation. Explicit schemes use past

states to define the current states, whereas implicit schemes define the current states using

past and current results. Furthermore, implicit methods exhibit better stability

characteristics than the explicit methods. As a note, all computer simulations were done

using Matlab 6.1 on a Pentium 4, 2.4 GHz computer. Also, the simulation time was from

0 to 20 seconds.
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2.5.1 Explicit Integration Methods

Although the use of a Matlab function was useful as a first attempt to solve the

system, it was necessary to write a user-defined integration scheme to fully understand

and control the simulation process. Because of its popularity and efficiency, the 4th order

Runge-Kutta method was chosen as the explicit solver. Like the ode45 function, this

Runge-Kutta method is an explicit, time-marching scheme with a time step, h, a local

error on the order of h5, and a global error on the order of h4 [35]. Since the maximum

allowable time step is proportional to the inverse of the largest magnitude eigenvalue of

the Jacobian, a time step based on this value was used for the baseline simulation. From

(2.19), 2max = 2.62x 104 for the maximum value of [y2l in the simulation, which

corresponds to a minimum time constant of 3.82x 10-5. To best capture the dynamics of

the system, a time step of 10-5 was used, which was more than three times less than the

minimum time constant. Note that the time step used, h, is in nondimensional form

defined by h = (o,,H, where H is the dimensional time step.

Although the baseline simulation (h = 10-5) gave the best results, it was not

necessary to use such a small time step at all times. From previous analyses, the

dynamics of the system is fast during periods of slip, but slow during microslip. Hence,

it would be advantageous to base the time step based on the local dynamics of the system.

One way to vary the time step was to define h based on the inverse of the maximum

eigenvalue, as shown in Figure 2.11. However, this would be cumbersome because

finding the eigenvalues of the Jacobian at each time step requires too many calculations.

The added overhead for such a technique would be prohibitive, especially for realistic

systems having a higher number of degrees of freedom.
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Another way to estimate the time step necessary to simulate the system was to use

the time constant, as defined by (2.21). From Figures 2.12(a) and 2.12(b), the inverse of

the time constant agrees well with the maximum eigenvalue during slip. The periods

where these values do not agree are the transitional periods and during sticking.

However, this disagreement was addressed by setting a maximum time constant such that

the integration scheme remained stable. For the system under consideration here, this

maximum time constant was set at 10-3. During periods of slip, estimated as T, < 0.02,

the time step was set to one-third of the time constant. Otherwise, the time step was set

to 10"3.

To make the simulation more efficient, another method based on the velocity was

used to estimate the time step. Because the dynamics of the system change rapidly at the

stick/stick transition periods, a small time step (104) was used in this region. Otherwise,

the time step was set to 10-3. This stick-slip transition region was defined as the range 0.1

< [y21 < 5. This range was relatively conservative because it assumed that the stick-slip

transition period occurred between velocities much smaller and much greater than the

Stribeck velocity (y2 = 1).

Table 2.2 compares the different explicit methods in order of decreasing

simulation time. In addition to the baseline case (4th order Runge-Kutta with h =constant

= 10 ), four other cases are shown: 4th order Runge-Kutta with h switched based on the

time constant, ode45 with RelTol = AbsTol = 10s, 4th order Runge-Kutta with h

switched based on [y2j, and 4th order Runge-Kutta with h =constant = 103. Two different

error metrics were employed. First, the error, E, was computed by taking the absolute

value of the difference in the dimensionalized friction forces at each instant in time. The
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first error metric listed in Table 2 is simply the maximum of E over the duration of the

simulation. The second error metric is the root-mean-squared error, ERMS, and is

calculated by

E2 dt (2.22)
T

where T is the final time. Since the number of time steps was different for each method,

the data was interpolated from the baseline data set for comparison. Lastly, the

simulation time is reported as a percentage to the baseline simulation time, which is

1651 s, or 27.5 minutes.

Table 2.2. Comparison of Explicit Methods

Simulation Error (N) Simulation Number of
Time Step

Method Max RMS Time (%) Steps

Runge-Kutta 10- n/a n/a 100 2.828x 06

(Baseline)

Runge-Kutta (1/3)Tor 10-3  0.207 7.46x10-4  14.8 4.020x10 5

(Time constant)

Ode45* n/a 1.68xI0-4 4.2-2x10" 3.62 1.476x1 0

Runge-Kutta 104 or 103  0.320 1.30x10 3  1.17 3.170x10 4

(Velocity)

Runge-Kutta 10-3 3.98x10-4  1.16x10-6 1.14 2.829x10 4

(Constant)

* absolute tolerance = relative tolerance = I 0-
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Table 2.2 shows that there is a significant improvement in the simulation time by

switching the time step based on the time constant of the system. However, the

maximum error using this method is unacceptable (-14% error) and the number of steps

required is still relatively large. The Runge-Kutta method with h-switching based on the

velocity performed much better in terms of simulation time and number of steps, but its

accuracy was the worst. The result using ode45 had the best accuracy and a very short

simulation time compared to the baseline. Finally, using the Runge-Kutta method with a

constant time step of 10-3 produced errors comparable to the ode45 method, but with the

smallest simulation time and least amount of steps. This last result is surprising since 10"

3 is roughly 26 times larger than the frictional time constant at the point of maximum slip

velocity.

2.5.2 Implicit Integration Methods

Despite moderate successes with the explicit methods, implicit integration

schemes were used to simulate the stick-slip system. The key advantage of the implicit

integration methods is better stability characteristics versus the explicit methods.

Therefore, it would be possible to use larger time steps (than the explicit methods) to

simulate the LuGre model, even during slip. However, the disadvantage of implicit

methods is the need to iterate at each time step. This iteration is necessary to solve for

simultaneous equations at each time instant. Lastly, despite the improved stability

characteristics, the accuracy of the implicit methods still depends upon the size of the

time step.
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The first implicit method to be applied to the stick-slip system was the

Trapezoidal method, which is effective for solving stiff differential equations [35]. An

extension of the Trapezoidal method is the Radau-IIA method [36]. Both the Trapezoidal

integration scheme and the Radau-IIA scheme can be expressed in a common framework.

At each time ti, two sets of nonlinear equations must be solved for the unknown vectors,

k, and k2:

ki =f ykt,+ Cl k +c2 k2 , u(t, + bl) (2.23)

k2 =f(y(t,)+c3 kI +c 4 k 2, u(t, +h)) (2.24)

where k, and k2 are 3xl vectors that approximate in some sense the average dynamics

over a time step. The value of the state vector at the next time step-is expressed in terms

of k, and k2 as follows:

y(ti + h) = y(t,) + c3 k, + c4 k 2  (2.25)

The difference in the Trapezoidal method and the Radau-IIA method is the values of the

constants ci and bl. For Trapezoidal integration, the constant values are

c1 =c 2 =0, c3 =c 4 =h/2, b1 =0, (2.26)

and for the Radau-IIA method:

c1 =5h/12, c2 =-h/12, c3 =3h/4, c4 =h14, bl=h/3 (2.27)

For the explicit methods, various schemes were investigated for their accuracy

and efficiency. Similarly, various schemes were also investigated for the implicit

methods. The results of the implicit integration methods are summarized in Table 2.3.

The Trapezoidal method was implemented with a constant time step of h = 0.005. The
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Radau-IIA method was compared using three different schemes for selection of h: h =

constant = 102, h switched based on velocity, and h switched based on the time constant.

When compared to the explicit methods in Table 2.2, the implicit methods on

average require less time and much fewer integration steps. The primary reason for these

improvements is that larger time steps (than the explicit methods) could be used to obtain

an accurate solution. Although the equations of the LuGre model are numerically stiff,

the implicit integration schemes are well suited to solve them.

Table 2.3. Comparison of Implicit Methods

Simulation Error (N) Simulation Number of
Time Step

Method Max RMS Time (%) Steps

Runge-Kutta 10"5 n/a n/a 100 2.828xl 06

(Baseline)

Trapezoidal 5x10-3  0.150 7.54x104 2.25 5.658x10 3

Radau-IIA
10-2 9.33x10-2 4.72x10"4 1.08 2.830x10 3

(Constant)

Radau-IIA
10-2 or 0.02 0.497 5.90x10.3  0.56 1.436x 03

(Velocity)

Radau-IIA
10-2 or 0.05 0.490 7.20x10-3  0.47 1.216x10 3

(Time Constant)

Similar to the findings for the Runge-Kutta method, it is observed that the

maximum error values for the variable time step methods were unacceptably large. A

reason for the relatively large errors was that at the stick-slip transition regions, there was
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a shift in the solution compared to the baseline. This shift occurred for both the explicit

and implicit methods that used a variable time step. Since the transitions in the friction

force occur very rapidly in time, even a small time shift in one simulation relative to the

baseline result can give rise to relatively large maximum errors.

From Tables 2.2 and 2.3, it appears that the best choice to simulate the stick-slip

system is to use the Radau-IIA method with a constant time step of 10-2. Surprisingly,

the use of 4th order Runge-Kutta with a constant time step of 10-3 also displayed a good

balance between accuracy and efficiency. In terms of simulation time, both the 4th order

Runge-Kutta and Radau-IIA methods are similar. The Runge-Kutta method has errors

two orders of magnitude better than the Radau-IIA scheme, however, the Radau-IIA

requires an order of magnitude fewer steps. Thus the best choice of integration scheme

may depend on the users' preference for accuracy versus speed, as well as on the

availability of computer memory. However, when simulating a large dynamical system,

using a larger time step would greatly reduce the computation time. This advantage

outweighs improved accuracy afforded by the Runge-Kutta method. Therefore, for large

systems with LuGre friction, the Radau-IIA method appears to be the best method for

numerical integration.
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CHAPTER 3

ENERGY TRANSFER AND DISSIPATION: DISCRETE SYSTEM

Once the complexity and numerical difficulties associated with frictional systems

are understood, an investigation into the effects of friction of the dynamics of a structural

system is conducted. As discussed in Chapter 1, vibration in space structures poses a

major problem because these structures have high precision and accuracy requirements.

Since friction is responsible for the majority of mechanical energy loss in structures, this

Chapter explores the energy dissipation caused by dry friction at a connecting joint. In

particular, this study examines the ability of friction to serve as a catalyst for energy

pumping. It is hypothesized that joint friction can be a means to pump low-frequency

vibrational energy to high-frequency vibrational energy, through the action of stick-slip

oscillations. Since energy can be dissipated faster at higher frequencies, this pumping of

energy to excite higher resonances may serve as a tool for increased energy dissipation.

In this manner, an inherent property of friction can be exploited to improve the overall

damping capacity of the system.

A simplified model of a connecting joint with friction is presented first. The

model consists of a 3 degrees-of-freedom (3DOF) spring-mass-damper system with a

frictional interface. The algorithm used to calculate the friction forces and the simulation

parameters are presented as well. Simulations were performed using Matlab and the

equations of motion were solved using the 4h order Runge-Kutta method. Next, the

steady-state and free vibration responses of the system are explored, followed by a

parametric study of the energy dissipation in the system.
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3.1 System Model

To model the friction contact at a connection joint, a 3 degrees-of-freedom spring-

mass-damper system was used. This configuration is similar to a model used by Warren

to study microdynamic frictional behavior in joints [4]. The 3DOF system, shown in

Figure 3.1, represents two structures modeled as single-degree-of-freedom systems that

are coupled by a mass sliding against a friction surface. The sliding mass (m2) is an order

of magnitude smaller than masses m, and m3. The absolute position and velocity of each

mass are denoted by xi and vi, respectively, while the parameters k1 and ci denote spring

and viscous damping constants, respectively. Note that these variables are different than

the variables introduced in the previous chapters. The function, P(t), represents an

external force applied to mass 1.

X1, V1  X2, V2  X3 , V3

k, k2 IN 3 k

M1 M2

F(v2)

Figure 3.1. System model of frictional contact at a connection joint.

The friction force, F(v), is defined as

F(v) = pY sgn(v) (3.1)

where v is the slip velocity, p is the friction coefficient, N is the normal force, and sgn(v)

is the signum function where sgn(v) = v/vl, v : 0. Using the Stribeck friction model, the

friction coefficient, p, is given by
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S= P*+r(e-P , 1) + 1Ivi (3.2)

where p * is the static friction coefficient and parameters y, fP, and a are constants [37].

There is one main reason why the Stribeck friction model is used in this case instead of

the LuGre model or other friction models described in Chapter 2. Because the hypothesis

is that stick-slip motion pumps energy to higher modes, it is necessary to isolate this

stick-slip mechanism. Continuous friction models such as the LuGre model contain other

internal dynamics that may obscure the phenomenon.

Figure 3.2 shows the relationship between the Stribeck friction force and the slip

velocity. The key mechanism that causes stick-slip behavior is the decrease in friction

force as Ivj increases around zero [38]. In Equation (3.2), the parameter y specifies the

difference between the static and sliding friction coefficients while fi determines the

steepness of the transition. The coefficient a was set to zero because it is typically

associated with a viscous-damping characteristic of lubricated contact. Setting a equal to

zero allows one to distinguish between the energy dissipation by viscous damping from

the energy dissipated due to dry friction.
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Figure 3.2. Stribeck friction coefficient as a function of velocity.

As seen in Figure 3.2, there is a discontinuity in the friction force when the slip

velocity is zero. The numerical problems related to this condition are discussed in

Chapter 2 as well as different methods to solve these problems. In this study, a sliding

mode control (variable structure system theory) algorithm is used to handle the

discontinuity and solve for the friction force [19]. This method is one of the "switching

strategies" addressed in Chapter 2. Presented next is a derivation of the equations of

motion and a discussion of the numerical solution technique.

The equations of motion for the 3DOF system can be written in the form

[M]{•}+ [C]{*}+ [K]{x} = {el }P - {e2 }F (3.3)

where {x} = [xl x2 x3 ]T, {el} = [1 0 0 ]T, {e } = [0 1 0]T, and the overdot represents a

derivative with respect to time. The matrices [M], [C], and [K] are the mass, damping,

and stiffness matrices, respectively, and are defined as
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m 0 0 k, +k 2  -k 2  0 C1 C2 C2 0

M = m2 0 ]K= -k2 k2 +k3 -k3 JC = -C2 C2 +C3 C3

0 0 M3_ 0 - k3 k3 + k4- 0 - C3 C3 +c4-

In order to simulate the response of the 3-DOF system, the equations given by (3.3) are

rewritten in the first-order, state-space form

0,1 = [A]{y} + {B}F + {F}P (3.4)

where {y} = [xl x2 x3 v] v2 v 3 ]T, {B} = -[0 0 0 ([Mr' {e2})T]T, and {F} = [0 0 0 ([Mf]-

I{ej})T]T. The 6x6 state matrix [A] is defined as

[A]=[ [o0 [I] 1
[M]-' [K] - [M]-' [C]

where [0] is a 3x3 zero matrix and [1] is a 3x3 identity matrix. The friction force, F, was

calculated using a sliding mode control algorithm, which is discussed next.

The techniques developed and used in the area of sliding mode control can be

used to define the "equivalent dynamics" that exist when sticking takes place.

Numerically, sticking is assumed to be possible when 1v21 < 0.001 m/s. Note that v2 can

be expressed as

V2 = [T]} (3.5)

where [7] = [0 0 0 0 1 0]. During sticking, the slip velocity is identically zero; hence its

time derivative must also be zero. Taking the time derivative of (3.5) yields

v2 = [T]{,} = [TI(A]{y} + {B}F + {F}P) =0 . (3.6)

Since Equation (3.6) represents the condition when the slip velocity is zero, the friction

force, F, must be the force necessary to impose the sticking condition. This force is

known as the equivalent friction force, Feq. Solving (3.6) for F yields

Feq = -qT]{B})- [T](jA]{y} + {F}P). (3.7)
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Qualitatively, the equivalent friction force is the force necessary to oppose the inertial

and external forces to impose the sticking condition. When this force is greater than the

maximum allowable friction force, then the system breaks away and starts to slip.

Figure 3.3 shows a flow chart of the logic steps to calculate the friction force. If

the slip velocity is equal to or smaller than the Stribeck velocity (v, = 0.001 m/s), then the

equivalent friction force is calculated. However, if this equivalent force is greater than

the maximum static friction force (0*N), then the mass is assumed to break free, and the

friction force is set equal to the dynamic friction force given by (3.1) and (3.2).

YES

Figure 3.3. Flow chart to calculate friction force (P = 0 case).

To observe the stick-slip behavior of the 2nd mass, the steady-state and free

vibration responses of the system were simulated. The goal was to excite the 1 st mass to
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induce stick-slip motion in the 2 nd mass. This stick-slip motion would pump energy from

the vibration of the 1st subsystem to the 3rd subsystem.

3.2 System Simulation

Once the equations of motion and the sliding mode control algorithm were

established, simulation of the 3DOF system was straight-forward. The method used to

simulate the system was the 4th order Runge-Kutta scheme with a fixed time step of 1 ms.

Table 3.1 summaries the values used for the simulation.

Table 3.1. Simulation Parameters

System Value Friction Value

Parameters Parameters

ml, m3 100, 50 kg ýt* 0.50

m2 0.25 kg 7 0.30

kl, k4 1000 N/m P 20.0

k2 , k3  100 N/m Vs 0.001 m/s

ý1,2,4, (3 0.01, 0.05 N 100N

The 3DOF system can be divided into three subsystems; each subsystem assumes

only one of the masses is moving. The natural frequencies for each subsystem are

therefore given by
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CDl =rl +k2

o k2 + k3  (3.8abc)

R 3 +k 4
C03 =ý m3

A small amount of viscous damping was added to the system in order to study the

interaction of stick-slip energy dissipation and structural damping. The damping

coefficients were chosen based on the following relations:

c1 = 2•'icom 1

C2 = 20)2°2 (3.9abcd)

c3 =21 3C2m3

c4 =24'4 co3m4

where ýi are closely related to the damping ratios of the individual subsystems. The

damping ratios are all 1%, except for the 3rd damper, which is 5%. This higher damping

ratio for c3 was chosen to ensure adequate excitation of the third subsystem. The

partition into three subsystems was useful in analyzing the behavior of the 3DOF system.

During periods of sticking by the 2nd mass, the 1s and 3rd masses oscillate like linear

single-degree-of-freedom (SDOF) systems with natural frequencies given by 0o) and 033,

respectively.

3.3 Steady-State Vibration Response

In order to understand the behavior of the system, the 3DOF system was subjected

to harmonic excitation of the form:

P(t) = W sin(codt) (3.10)
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where W is the force amplitude (1 500N), cod is the driving frequency, and t is the time.

Since the stick-slip motion of the 2nd mass exhibits odd numbered harmonics, tuning the

3rd subsystem to one of the harmonics would theoretically produce an internal resonance

in the response [39]. The 3rd subsystem was tuned by keeping k3 and m3 constant and

varying k4 so that

k4 = 1J2(k, +k2)-k 3  (3.11)

where r is the tuning ratio defined as (03 /co0.

Before the steady-state response is presented, it is instructive to examine the

linear modes of the 3DOF system in the absence of friction. In particular, the effect of

the tuning ratio on the natural frequencies and mode shapes of the system are explored.

As seen in Figures 3.4(a) through 3.4(c), mode I is mostly dominated by mass 1, mode 2

is dominated by mass 3, and mode 3 is dominated by mass 2. The modes are fairly

localized, except when the tuning ratio is 1. At this tuning ratio, mode 1 is a combination

of the motion of all three masses. Mode 2 is a symmetric mode where the motion of

mass I mirrors that of mass 3 while mass 2 is largely immobile. However, mode 3 is

seen to be invariant for tuning ratios from 1 to 4.
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Figure 3.4. Modal amplitude versus generalized coordinate number for (a) Mode 1, (b)

Mode 2, and (c) Mode 3.

The natural frequencies of the linear system follow the same pattern as the mode

shapes. At a tuning ratio of 1, modes 1 and 2 have similar natural frequencies. As the

tuning ratio is increased from I, only the natural frequency of mode 2 is increased,

whereas the natural frequencies of modes l and 3 remain relatively constant. Table 3.2

lists the natural frequencies of the modes for several tuning ratios.
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Table 3.2. Natural Frequencies (rad/s)

Tuning Ratio Mode 1 Mode 2 Mode 3

1.0 3.08 3.32 28.3

2.0 3.24 6.55 28.3

3.0 3.24 9.89 28.3

4.0 3.24 13.2 28.3

The steady-state response of the 3DOF system was obtained by simulating the

system until the transient dynamics disappeared. Rather than using the peak

displacement per cycle, the amplitude of the steady state response of each mass was

described by its root-mean-squared (RMS) displacement:

Xs = jx2dt (3.12)
r2tl

T11

where T is some time duration in the steady-state and is given as T = t2 - tj. The time

duration T is defined to be the last 5 periods of the forcing frequency at the end of each

simulation. The RMS response was captured over a span of excitation frequency ratios,

d, defined as d = (od/Lo!. To expedite the simulations, the end states of each steady-state

response were used as the initial conditions for the next frequency ratio. Simulations

were always terminated after an integer number of excitation periods had passed.

Figure 3.5 shows the RMS displacements of the 3 rd mass as a function of

excitation frequency ratio (d) for four tuning ratios, r. This plot shows the presence of

internal resonances when the excitation frequency is roughly one-third of the tuned

natural frequency of the 3 rd subsystem. For example, there is an internal resonance at an

excitation ratio of 1.33 when the frequency ratio is 4.0. This phenomenon occurred at all
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the tuning ratios except when r = 3.0. At this frequency ratio, the internal resonance

would occur at d = 1.0, which is overshadowed by the resonance of the I ' subsystem.

Also noticeable in Figure 3.5 are the internal resonances corresponding to one-fifth of the

frequency ratio; e.g., the small peak at d = 0.6 when r = 3. Lastly, the double peak near d

= I for the case r = I is due to resonances of the 1st and 2 nd modes being closely spaced

together.

102

-r=2

-r=3

101 - r=4

•100
0.31

X0 
/1.33

10"2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Driviing Ratio, d

Figure 3.5. RMS displacement of the 3 mass as a function of excitation frequency ratio.

An examination of the time histories of the steady-state responses revealed a

significant amount of stick-slip of the 2 nd mass. Thus, excitation at a single frequency is

converted into multi-harmonic response by means of the friction nonlinearity. Under

favorable tuning conditions, these higher harmonics excite internal resonances as
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expected. In the following section, the extent to which subsystem tuning can lead to

enhanced energy dissipation during free response is examined.

3.4 Free Vibration Response

The free vibration response of the 3DOF system was simulated to quantify the

energy transfer from one subsystem to the other and from low frequencies to higher

frequencies. Furthermore, it was important to understand under what states of excitation,

friction level, and tuning of the 3 rd subsystem did favorable conditions existed for

maximum energy dissipation. To simulate the free response, the external force P(t) was

set to zero and an initial velocity of 2.0 m/s was applied to mass 1.

Figure 3.6 shows a typical free response of the 3-DOF system for a normal force

of 40 N and a tuning ratio ofr =1. While the displacement and velocity of the !st mass

decrease with approximately linear envelopes of decay, the 2nd mass shows periodic

stick-slip behavior until it is completely stuck at a time of about 20 s. This stick-slip

behavior is more evident in the velocity of the 2 nd mass shown in Figure 3.6(b). The

result demonstrates that there is a one-way transfer of vibratory energy from the 1st mass

to the 3 rd mass because once mass 2 is stuck, masses 1 and 3 oscillate like damped,

isolated SDOF systems. Lastly, note that the free response of the 1 st mass is similar to

having a persistent, nearly harmonic excitation of masses 2 and 3 through the force in

spring k2 and viscous damper c2.

As shown in Figure 3.6, it is clear that there is a transfer of energy from the 1 st

mass to the 3rd mass. To quantify how much energy was transferred, it was necessary to

look at the energies in the combined system as well as in the individual subsystems. Of
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further interest was the energy transfer at frequencies higher than that of the fundamental

frequency of the 1st mass. To accomplish this task, the 3rd subsystem was tuned for a

range of tuning ratios, r. When the stick-slip motion excited a resonance of the 3rd

subsystem, there would be a corresponding increase in displacement and velocity. This

increased velocity would correlate to higher energy dissipation by the dampers connected

to the 3rd mass. Therefore, by examining the energy dissipation in the 3-DOF system,

one could quantify the amount of total energy transfer and the energy transfer at higher

frequencies.
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, /Mass 30.4 2 "

i _0.2. . . , •
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Figure 3.6. (a) Displacement and (b) velocity time histories of the 3-DOF system (N=
40N, r= 1).

3.5 Energy Dissipation

The total energy, Erotal, in the 3DOF system is defined as

1Ta tflT[[KI [01(Y 3l3
E 2 .1 [ [0J [Mf

where [0] is a 3x3 zero matrix. Therefore, the total energy dissipated, Edit, is given by

Edu = (ETota, ),=o - (ETýo,a ),=cf (3.14)

where tfis the end time of the simulation. The total energy dissipated can be separated

into the sum of the energy dissipated by viscous dampers and the energy dissipated by

Coulomb friction. If the power dissipated by each viscous damper is denoted as PF, the

total dissipated energy can be expressed as
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41 f

Eda = P ,Pf dt + (Edis)on (3.15)
i=1 0

where

PI = Cl •VI 2

P2 = C2 (V2 -V) 2  (3.16abcd)

P3 =C3(V3 -v 2 )2

P4 =C4 V32

By (3.15), it is then possible to indirectly calculate the energy dissipated by friction.

To find the optimal condition for friction to pump energy to higher frequencies,

several factors were considered. The total energy of the system was evaluated as a

function of the mass ratio (mr.nml), the tuning ratio (r = Co w oj), the normal force, and the

simulation time. A mesh was used to visualize how the total dissipated energy varied as

a function of two variables. For the meshes shown in Figures 3.7(a) and 3.7(b), the

constant values are the mass ratio (0.5) and the simulation time (15.1 s). This simulation

time corresponds to one-half of the time constant of the 1 st subsystem, where the time

constant = 1/(oijfj). The normal force is varied from 0 to 100 N, in increments of 10 N;

and, the tuning ratio is varied from 0.6 to 8.0, in increments of 0.1. Figure 3.7(a) shows

the total energy dissipated after 15.1 s of free response. There is a large peak near a

tuning ratio of r = 1, but there are some smaller peaks as r is increased and N is greater

than 80 N. To study this feature more closely, the energy dissipated by the 3 rd and 4 th

dampers over the same time interval are examined, as shown in Figure 3.7(b).

From Figure 3.7(b), there is a large peak in dissipated energy near a tuning ratio

of 1. This peak appears to be the result of a "vibration-absorber" effect. As the normal

force increases, the absorber effect is less prominent and ripples in the energy dissipation
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at higher tuning ratios can be seen. Finally, at N = 100 N, there are definite peaks that are

evident at certain tuning ratios. The peaks suggest that the force input to mass 3 excites a

resonance, thereby causing greater energy dissipation.
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Figure 3.7. Energy dissipated by the (a) entire system and (b) the 3rd and 0~ dampers.

A slice of the mesh in Figure 3.7(b) at N= 100ON is shown in Figure 3.8. This

plot clearly shows five distinct peaks between the tuning ratios of 2 and 7. These peaks

correspond to tuning ratios of r = 2.0, 2.9, 3.9, 4.7, and 5.7. In other words, when tuned

to these higher frequencies, the resonance of the 3 rd subsystem was excited by the stick-

slip motion of the 2nd mass. Therefore, friction on mass 2 pumps energy to higher

frequencies. As mentioned previously, the natural frequencies of the Pr subsystem and

that of mode 2 in the linear (frictionless) system are closely related. In fact, the natural

frequencies of the 3rd subsystem and that of mode 2 are nearly identical for tuning ratios

above 1. Therefore, exciting a resonance of the Pr subsystem is analogous to exciting the

2 dmode in the linear system.
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Figure 3.8. Energy dissipated by the 3 rd and 4th dampers atN= 100 N.

The result shown in Figure 3.8 is interesting because it does not agree with the

result from the steady-state response. Although the peaks in Figure 3.8 appear in

somewhat regular intervals, they do not occur at only odd harmonics of the frequency of

free vibration of the 1 st subsystem. This behavior could be attributed to the stick-slip

motion during free response (see Figure 5(b)). Since the stick-slip lasts for a finite

amount of time, the input into the 3rd subsystem looks like a series of impulses. The

impulses have broad frequency content and can excite many frequencies.

To find the best condition for energy dissipation, the energy dissipated by the 3 rd

and 4th dampers was examined for different levels of normal force and mass ratios

(m3Im,). Figures 3.9 and 3.10 examine how the energy dissipated by the 3 rd and 4th

dampers varies with mass ratio and normal force, respectively. Simulation duration times
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of longer than 15 s did not have a significant effect on the energy dissipation trends

because permanent sticking occurred shortly after 15 s.

3 0
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Figure 3.9. Energy dissipated by the 3 rd and 4th dampers with varying mass ratios (N=
100 N, tf= 15.1 s).
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Figure 3.10. Energy dissipated by the 3 rd and 4h dampers with varying N (mass ratio =

0.5, tf= 15.1 s).

Figures 3.9 and 3.10 show that the energy dissipation is sensitive to system

parameters. In Figure 3.9, the peaks increase as the 3rd mass decreases. This trend is

consistent with a vibration absorber, in which a smaller absorber mass leads to increased

absorption over a smaller frequency range. At a mass ratio of 0.25, there is a sharp rise in

the 1 st peak. However, the 5th and 6h peaks are not as pronounced when compared to a

mass ratio of 0.5. Similarly, a mass ratio of 1.0 does not produce noticeable peaks,

except when r is near 1.

In Figure 3.10, the peaks at r = I decreases as the normal force increases, as

mentioned earlier. Similar to the mass ratio, the peaks at tuning ratios larger than I are

best accentuated at a particular value. In this case, the value is a normal force of 100 N.
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At normal forces above 110 N, mass 2 is completely stuck at all times for the initial

condition considered here.

The previous results show that friction pumps energy to higher resonances, which

serves to increase energy dissipation at the higher resonances. However, it is important

to note that the majority of energy dissipation in the 3DOF system is due to friction on

mass 2 and the dampers connected to the 1st mass, where the motion originated. For

example, at a tuning ratio of 1.1, the energy dissipated by the 3rd and 4th dampers

accounts for 11% of the total energy dissipated. At a tuning ratio of 2.0, the energy

dissipated by the 3rd and 4th dampers accounts for 7% of the total energy dissipated.

Despite the modest amounts of energy dissipation attributed to the 3rd and 4h

dampers, it is necessary to evaluate the advantage of the energy pumping phenomenon

versus the case where friction is not present (normal force = 0). To make this

comparison, the ratio of the energy dissipated by the 3rd and 4th dampers to the total

energy dissipated was evaluated for the friction and non-friction cases. Table 3.3

summarizes the comparison when the normal force is 100 N versus 0 N at tuning ratios

corresponding to the peaks in Figure 3.8. For the frictionless case, the energies dissipated

are constant after an initial peak at a tuning ratio of 1.

Table 3.3. Percentage of Energy Dissipated by the 3rd and 4th Dampers to the Total
Energy Dissipated

Freq. Ratio 1.1 2.0 2.9 3.9 4.7 5.7

N= 100 N 11 7.0 6.7 6.6 6.7 6.1

N=ON 42 2.7 2.7 2.7 2.7 2.7
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Table 3.3 shows that there is greater dissipation for the friction case except when

the tuning ratio is at 1. 1. Although the advantage is small (about 4% of the total energy

dissipated), this result demonstrates that the pumping of energy to higher resonances can

serve as a tool for increased dissipation. As for the case where the tuning ratio is 1. 1,

there is greater dissipation by the Pr and 4 th dampers of the frictionless system; however,

the total energy dissipation is greater in the system with friction. At this tuning ratio, the

total energy dissipated by the frictionless system is 130.4 J, versus 189.7 J for the system

with friction.

This investigation was admittedly simple in order to permrit a more thorough

understanding of the phenomenon. Specifically, the joint model was represented by

simple SDOF subsystems. The next chapter applies the Stribeck friction model to a more

complicated joint model. It is expected that the results seen in this study can be extended

to higher order systems.
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CHAPTER 4

ENERGY TRANSFER AND DISSIPATION: CONTINUOUS SYSTEM

Up to this point, the focus has been on the effects of friction in discrete systems.

Because of the relative simplicity of the discrete systems, it is possible to thoroughly

examine and understand the behavior and features of the frictional interface. Results

from Chapter 3 suggest that a frictional interface can pump vibratory motion from one

frequency to higher frequencies, thus exciting higher resonances. This chapter applies

the concepts learned in Chapter 3 to a more complicated, and realistic, joint

configuration. Similar to the analysis of the 3DOF system, the energy transfer and

dissipation between subsystems connected by a frictional interface is explored in this

chapter. In particular, the relationship between the tuning parameter and energy

dissipation is examined.

Presented first is the model of the continuous beam system and the governing

equations of motion. The beam dynamics are approximated using a finite modal (Ritz)

series. Next, a state-space model is developed to simulate the response of the system.

Following the development of the state-space model is an evaluation of the forced steady-

state response of the beam alone, as well as the entire system. Afterwards, the energy

transfer and dissipation between the subsystems during free response, as well as the

controllability of the entire system are discussed. Finally, this chapter concludes with the

sensitivity of the system to tuning parameters and friction laws.
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4.1 System Model

An improvement to the 3DOF joint model in Chapter 3 is shown in Figure 4.1.

The jointed structure is represented by a cantilever beam connected to a SDOF spring-

mass-damper system via a friction damper attachment. An advantage of this model over

the 3DOF system is the "floating" joint configuration. This configuration means that the

coupling between the two structures is through the frictional element itself. In contrast to

the 3DOF system of Chapter 3, the two subsystems of the beam-mass system continue to

interact, even when the interface is fully stuck. This configuration is more realistic for

many types of structural connectors. Another advantage of this model is that,

theoretically, the beam has an infinite amount of modes. Although a finite number of

modes will be used in this study, the multi-mode property of the beam creates more

complex interactions between the beam and the attached SDOF system.

w(x,t)

Beam: m, p, A, L, E, I

X Friction Damper w2(t) P(t)
Attachment _JLJ

M2 r J J•k////2

C2 Wr2

Figure 4.1. Beam-mass system model of a jointed structure.

The beam properties m, p, A, L, E, and I represent the mass, density, cross-

sectional area, Young's Modulus, and moment of inertia, respectively. The parameter x
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denotes the displacement along the beam, with x = 0 defined as the clamped end and x =

L is at the friction attachment. Transverse displacement of the beam, w(x,t), is a function

of the spatial coordinate and time, t. For the attached SDOF system, the mass is m2, the

spring constant is k2, the damper constant is c2, and w2(t) is the displacement. The

function, P(t), represents an external force applied directly to mass 2.

The friction attachment can be modeled as a pair of equal and opposite friction

forces acting on the end of the beam and on mass 2. This friction force would be

dependent on the relative velocity between mass 2 and the velocity at the end of the

beam, defined as v,,e = 2 (t) - *'(L, t). Therefore, the friction force, F(v), is given by

F(v) = pN sgn(Vre' ) (4.1)

where N is the normal force and p is the Stribeck friction coefficient given by Equation

(3.2). As in Chapter 3, the coefficient a in Equation (3.2) is set to zero in this case as

well. Furthermore, parameters for the friction model can be found in Table 3.1.

4.1.1 Governing Equations

The governing equations of motion for the system shown in Figure 4.1 can be

broken into two sets: a set of equations for the beam and a set for the attached SDOF

system. For an unforced, uniform beam, the partial differential equation describing the

flexural displacement is based on the Bernoulli-Euler model and is given by

EI aw(x't) + pA&i(x,t) = 0 (4.2)
ax4
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where a" represents an nth order partial derivative and the overdot represents a partial

derivative with respect to time. The equation for the SDOF system is much simpler and

is given by

m 2 •,I2 (t) + c 2ii' 2 (t) + k 2w 2 (t) = P(t) - F(v). (4.3)

The sign of the friction force in (4.3) is determined by examining a free body diagram of

the system. Since VreI is defined as the velocity of the mass minus the velocity at the end

of the beam, the friction force must oppose the motion of the mass when Vrel is positive.

At the end of the beam, this friction force acts in a positive (up) direction when VreI is

positive.

The solution to (4.2) can be approximated by a finite modal Ritz series

NM

w(x, t) = ,z,(t)(, (x) (4.4)
i=1

where zi(t) is the normal mode amplitude of the ith mode, (pi(x), and NMis the number of

modes. For a uniform cantilever beam, the normal mode is given by

IP, W cos AIX - 2,x cosh_ ,+cosA (4.5)
1 jmL •cL L sinhA +sin2 )Ai L s(5

where 2; is the id' root of the characteristic equation

cosh A, cos 2, + I = 0. (4.6)

The first two nonzero roots of (4.6) can be found numerically and they are 2A = 1.8751

and 22 = 4.6941. For i> 3, the root can be approximated by the asymptotic relationship

i Z2i -1 r. (4.7)

2

From the roots of the characteristic equation, the ith natural frequency of the beam, Coi, is

given by
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SpA=KL- J2I. (4.8)

The normal mode amplitudes, z1, are governed by a set of 2nd order differential equations

ii + 2 co, i, + Wiz 1i = F(v)(o, (L) (4.9)

where (. is the damping ratio for the ith mode. Using orthogonality, it can be shown that

the mode function, (pi, is normalized such that the modal masses are unity. For a more

thorough discussion of the equations of motion for a continuous beam, see References

[20] and [40].

4.1.2 System Properties

The properties for the beam system are given in Table 4.1. With the exception of

the normal force, the values for the Stribeck friction model are the same as those used in

the 3DOF system (see Table 3.1). The modal damping ratio, ýi, is constant for all modes.

As a note, the mass of the beam can be calculated by m =pAL = 0.636 kg; and, the

damper constant is calculated by c2 = 2ý2 k-2m2 , where ý2 is the prescribed damping

ratio of the uncoupled mass-spring-damper system.
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Table 4.1. Properties for the Beam-Mass System

Beam Value Other Value
Properties

pA 0.636 kg/m m2 1.0 kg

L 1.0 m k2 400 N/m

E 7.3 x 1010 N/mi2  0.01

1 1.325 x 1010 m4  N 5 N

(i 0.01

To better understand the beam system, it is useful to study the linear modes of

each subsystem without the friction attachment. For the spring-mass subsystem, the

undamped natural frequency, (0,2, is simply given by

0),,2 = ; (4.10)

Later in this chapter, this frequency, also known as the tuning frequency, will be varied to

study the energy dissipation in the entire system. For the beam, the undamped natural

frequencies and mode shapes can be calculated using (4.8) and (4.5), respectively. Figure

4.2 shows the normalized mode shapes and natural frequencies for the first four modes of

the beam.
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Figure 4.2. Mode function and natural frequencies for the cantilever beam.

4.1.3 State-Space Formulation

Once the governing equations and properties for the beam system are established,

a state-space formulation is used to simulate the system. The state-space contains both

the modal coordinates, z,, and the position coordinate of the attached mass, w 2 (t).

Furthermore, the state vector contains the 1 st time derivative of these coordinates as well.

Therefore, the dimension of the state-space is 2NM+ 2 and the state vector, (q), is

defined as

{q}=[z, z 2  i2 .z. NM w1 2 .2 ]T. (4.11)

With the state vector defined, the first-order, state-space equation can be expressed as

{(} = [A] {q} + {B}F + {r}P (4.12)
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where [A] is the state matrix with dimension 2NM+ 2, {B} is the state input vector

associated with the friction force, and {(n is the state input vector associated with the

external force. Notice that this equation is consistent with the form in (3.4) in Chapter 3;

however, the variables are different in this case.

The state matrix, [A], and state input vector, [B], can be divided into sub-matrices

and sub-vectors as follows

[ [AB1] [0] 1], {B)='BB}' (4.13)[A] = [0 [A]I L{B} }
L[0] [Am] ({Bu~ )413

where [AB] and [AM] are the state matrices for the beam and mass, respectively; and, {BB)

and {BM} are the state input vectors for the beam and mass, respectively.

Correspondingly, the dimensions for [AB] and {BB} are 2NM. For [AM] and {BM}, the

dimension is 2. Lastly, the vector {() is given by

{F} =[0...0 l/mr2]T . (4.14)

The state matrix [AB] can be further broken into diagonalized stiffness and

damping matrices as follows

F 0] [I] 0l
[AB]- -[K] -[CIJ'(

where

S0 0446 00

2k] (4.16)

.. 02U 0. 0 ... 2,ý,vu CO)M

and [1] is the identity matrix. The dimension of the all the sub-matrices in (4.15) is NM.

The state input vector {BB} is given by
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{BB}=[0 ... 0 iol(L) V2(L)... ePNM(L)IT. (4.17)

Finally, the state matrix, [AM], and state input vector,{B}m), are defined as

[AM]= -km -C {BM) =- } (4.18)
1 m2 Y 2 21

Since the state vector contains the modal coordinates, Equation (4.4) must be used

to calculate the displacement of the beam. To calculate the velocity of the beam, (4.4) is

differentiated with respect to time so that

NMv(x, t) =: ii • (t)•o(x) W (4.19)

i=I

To calculate the friction force, the same switching algorithm used in Chapter 3 is used

here (see Section 3.1). Following the steps outlined in Section 3.1, the relative velocity is

given by
NM

v,e, = w2 (t) - *i,(L, t) = *'2 (t) - )i •, (t)(o, (L) = [T] {q} (4.20)
i=1

where

[T]=[0 ... 0 -q(l(L) - p 2(L) p.-,M(L) 0 1]. (4.21)

Similarly, the equivalent friction force, Feq, in this case is

Fq = -qTJ{B})-' [TRIAJ]y} + {-}P). (4.22)

4.2 System Simulation

Initial simulation of the system of equations given by (4.12) was performed using

the 4th order Runge-Kutta method with a fixed time step of 5x1 04 s. Not only does the

accuracy of the solution hinge on the size of the time step, it also depends on the number

74



of modes, NM, used in the modal series. Theoretically, the approximate solution given

by (4.4) approaches the true solution as NM approaches infinity.

4.2.1 Mode Number Convergence

A study was conducted to find out how many modes were necessary for the

response of the beam to converge. Since the friction attachment is at the end of the beam,

it was expected that the motion of the beam would be dominated by the first few modes.

Figures 4.3(a) and 4.3(b) plots the response at x = L for several cases with different

values of NM. The excitation was an initial velocity of 2.0 m/s applied onto the attached

mass.

From the figures below, the responses using 2 modes is not accurate compared to

the responses with 4 or 8 modes. However, the response using 4 modes accurately

captures the response and there is little difference between using 4 modes and using 8

modes. Therefore, for the remainder of the studies in this Chapter, 4 modes are used to

describe the beam dynamics.
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4.2.2 Steady-State Frequency Response

To gain insights into the beam system, the steady-state forced response was

studied. First, the steady-state response of the beam without any attachments was

examined. In this case, the forcing function, P(t), is applied at the end of the beam and is

given by

P(t) = W sin(wdt) (4.23)

where W is the amplitude of the force and (Od is the driving frequency. Figure 4.4 shows

the displacement magnitude of the frequency response function at the end of the beam (x

= L) for a driving frequency range of 5 to 100 rad/s. This range was selected because it

captured the first two modes of the beam, which is the focus of further investigation in

this chapter. From Figure 4.4, the 1st and 2 nd modes of the beam at 13.7 and 85.9 rad/s,

respectively, can be easily seen, as well as what appears to be a zero at 60.3 rad/s. In

Figure 4.5, the phase angle of the response is shown. From this plot, the zero at 60.3

rad/s is confirmed because of the 180 degree phase shift near this frequency.
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Once the steady-state response of the beam was characterized, the frequency

response of entire beam system was evaluated. The forcing function given by (4.23) is

now applied to the attached mass, as seen in Figure 4.1. Again, the response was

evaluated at the end of the beam, where the friction damper is attached. For the case

shown in Figures 4.6 and 4.7, the natural frequency of the attached SDOF system, 0on2,

was tuned to 50 rad/s so that it was well separated from the modes of the beam. Like the

3DOF system, tuning was accomplished by keeping the mass of the SDOF system, m2,

constant while changing k2 such that

k 2 = m 2 0.)n2 (4.24)

This tuning parameter will be of greater importance in the next section.
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Figure 4.6. RMS Displacement frequency response of the beam system at x =L
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There are several interesting features about the frequency response of the beam in

Figure 4.6. The first feature is the noisy areas of the plot, especially around the null in

the vicinity of 60.3 rad/s. This problem can be attributed to a relative lack of precision in

the switching algorithm caused by a coarse time step. The noisy areas diminish as the

time step is reduced. Secondly, there is a flat top in the response in the region of the 1st

mode of the beam (13.7 rad/s). This is caused by a variation in the resonant frequency as

different levels of slip occur. If the interface is almost stuck, the beam-mass system will

exhibit a resonance at a frequency somewhat lower than the first beam natural frequency.

However, if excited at that resonance, the interface will break free, thereby adding

damping while disrupting the resonance. This phenomenon creates a saturation-like

appearance in this region. Lastly, the most important effect is the presence of internal

resonances in the frequency response. In Figure 4.6, there is an internal resonance at 28.6

rad/s, corresponding to 1/3 of the frequency of the 2nd mode of the beam (85.9 rad/s).

Also noticeable is a small internal resonance peak at 48.1 rad/s, or 1/5 of the frequency of

the 3rd mode of the beam (241 rad/s). The presence of the internal resonances is much

more evident in the modal response of the beam. Figure 4.7 shows the frequency

response of the decoupled modal coordinates, zi, of the beam. Aside from the noisy

region around the 1st mode of the beam, the presence of internal resonances for each

mode is clear. Each peak corresponds to an odd harmonic of the natural frequency of the

particular mode, for example 1/3, 1/5, 1/7, etc.
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Figure 4.7. Modal displacement response of the beam system.

The apprearance of internal resonances suggest that the friction damper in the

beam-mass system pumps energy to higher modes, i.e., the friction nonlinearity converts

excitation at one frequency into a multi-harmonic excitation. The next section examines

how tuning the SDOF system to the internal resonances can affect the energy dissipation

in the free response of the system.

4.3 Energy Dissipation

The energy dissipation of the beam-mass system was evaluated by observing the

free response of the system. Excitation to the system was an initial velocity of 2.0 m/s

applied onto the attached mass while the external force, P(t), was set to zero. To isolate

the energy dissipation to the beam and the friction damper, the viscous damper attached
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to the mass, C2, was set to zero as well. Lastly, the energy dissipated was evaluated after

a time, tf, equal to 10 natural periods of the 1st mode of the beam. This time is

approximately 4.6 s.

4.3.1 System Energies

The energy dissipated in the system can be calculated by taking the initial system

energy minus the system energy after tf seconds. Since the excitation is an initial

velocity, the initial system energy, (Eotat)t=o, is therefore

I -m2'2(t = 0) (4.25)

where w2 (t = 0) is the initial velocity. At any other time, the total energy in the system is

the sum of the beam energy, Ebeam, and the energy of the attached mass system, Emass.

The beam and mass energies are composed of the kinetic and potential energies as

follows:

Ebeam = •.i +.=_1z2 (4.26)

1 .2 1.2
Emas 1 =m 2 2 +lk 2w2 . (4.27)

Therefore, the total dissipated energy after (fseconds is given by

EdS = (ETo,,a ),=o - (Ebeam + Emas,,)s=" (4.28)

The energy dissipated in the system was evaluated as a function of the tuning

frequency, or a)n2. Similar to the analysis of the 3DOF system in Chapter 3, the purpose

of varying the tuning frequency was to determine favorable tuning conditions to

maximize energy dissipation in the system. In particular, at what values of tuning
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frequency and normal force would there exist a "sweet spot" where the energy dissipation

is maximum? Intuitively, this sweet spot should occur when the tuning frequency is at an

internal resonance of the system. If the tuning frequency is near a resonance of the beam,

then the relative motion between the beam and mass would be small, thus causing the

friction damper to be stuck. In this case, the majority of energy dissipation will be

through the modal damping of the beam. Conversely, if the tuning frequency is far from

a beam resonance, significant sliding should occur between the beam and the mass and

energy dissipation would be primarily due to friction. However, if the tuning frequency

is equal to that of an internal resonance, then both the modal damping in the beam and the

friction would contribute to the energy dissipation. In this scenario, energy would be

pumped to a higher mode in the beam, thus causing the energy to be dissipated faster.

Also, since the beam is vibrating at an odd harmonic above the frequency of the mass, the

motion between the two systems should be out of phase. This motion should induce slip

in the friction damper, thus dissipating energy.

To explore the effects of tuning, the energy in the system was evaluated as a

function of the tuning frequency and the normal force at the friction damper. Figure 4.8

shows a mesh of the total energy remaining after 4.6 s of free response. This parameter

was chosen because it was easier to visualize than a mesh of the total energy dissipated.

For the mesh shown in Figure 4.8, the high values indicate poor energy dissipation while

low values signal good energy dissipation. The range for the tuning frequency and

normal force are 5 to 100 rad/s and I to 10 N, respectively.
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Figure 4.8. Total system energy after 4.6s of free response.

From Figure 4.8, it is clear that the poorest energy dissipation occurs when the

tuning frequency is near natural frequencies of the beam modes. However, a surprising

result is that the energy dissipation when the tuning frequency is at an internal resonance

(28.6 rad/s) is worse than the energy dissipation when the system is completely mistuned.

There are peaks in the energy at the internal resonance, especially as the normal force

increases. On the other hand, the area around 60 radls stays relatively flat above N = 2

and is the lowest point in the mesh.

The results suggest that friction plays the dominant role in dissipating energy in

the system. From Figure 4.4, there is a zero in the beam-end frequency response function

at 60.3 rad/s. At this frequency, there is very little motion at the end of the beam, thus

facilitating sliding of the frictional interface and maximizing the work done by the
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friction force. At 28.6 rad/s, some of the energy is transferred to the 2 nd mode of beam

via stick-slip motion. Although there is a slight increase in the energy dissipated by the

modal damping of the beam, the energy dissipation provided by the friction damping is

still dominant, especially given the small modal damping ratios used in this study.

Another way to interpret these results is by examining the controllability of the beam-

mass system.

4.3.2 Controllability of the Beam-Mass System

Controllability is defined as the ability of an input to transfer the state vector of a

system from any initial value to any final value in finite time [41]. In other words,

controllability is a measure of whether or not the state-space equation can be controlled

from the input. In the case of the beam-mass system, there is no "control input" per se,

but we are interested to know the degree to which the friction force acting between the

beam's end and the mass m2 can effectively remove energy from the system. Treating the

friction force as a control input, and setting the external disturbance P(t) to zero, equation

(4.12) reduces to

{q} = [A] {q} + {B}F (4.29)

To investigate the controllability of (4.29), it is assumed that F can attain any functional

form. In reality, however, it is limited in magnitude and can only oppose the relative

motion during slip. Since (4.29) is linear and time-invariant, a simple test exists to

determine controllability [41]. According to linear system theory, the system is

controllable if and only if the controllability matrix, A, has full rank:

A=[BABA2 B An-'B] (4.30)
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where n is the dimension of the state and input matrices, n = 2(NM+I). Thus, (4.29) is

controllable if and only if A has n linearly independent columns. Note that the first

column of A is the input vector {B}, and each subsequent column amounts to [A] times

the previous column.

Initial attempts to compute A were unsuccessful because of numerical

overflow/underflow problems, which were tied to the relative disparity in the size of the

elements of the A matrix. To alleviate this problem, each column of the A matrix was

normalized prior to multiplication by [A]. This operation alleviates the roundoff errors,

while preserving the column space of the A matrix.

While the rank of A determines whether or not the system is controllable, the

degree to which the system is controllable can be quantified by the condition number of

A. The condition number of A can be defined by:

cond(A)= IhAil II O'max /O'min (4.31)

where amo. and a,,i, are the maximum and minimum singular values of A, respectively. If

the columns of A are orthogonal, cond(A) = 1. As the linear independence of the

columns of A degrades, the condition number of A will get larger and larger. If the

columns of A become linearly-dependent, cond(A) = o , indicating a loss of rank. In

practical terms, if cond(A) is high, it indicates that high magnitudes of control force will

be necessary to reach various points in the state space. This has increased significance in

the beam-mass system under consideration because the control input in this case is the

friction force, which has bounded magnitude.
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Figure 4.9. Condition number of the controllability matrix versus tuning frequency.

Figure 4.9 shows the condition number of A for tuning frequencies between 5 and

100 radls. Qualitatively, the figure shows relatively poor controllability when the tuning

frequency coincides with a natural frequency of the beam. This indicates that it is more

difficult for the friction force to affect the dynamics of the system at these tuning

frequencies. Therefore, the friction force does less work and has poor energy dissipation

capabilities. On the other hand, the condition number is lowest at a tuning frequency of

59.9 radls. At this frequency, the control input has the most control over the dynamics of

the system; therefore, the friction force has the greatest potential to damp out the system

response. The reason why 59.9 radls is associated with high energy dissipation can be

found by looking at the phase angle in Figure 4.5. This frequency is just to the left of the

zero phase angle associated with the zero at 60.3 radls. At 59.9 radls, the phase
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difference between the response of beam and the input, coupled with the small response

of the beam, contribute to high slip in the friction interface and maximizes the work done

by the friction force. Similarly, frequencies just to the right of 60.3 rad/s can also

contribute to high energy dissipation because of the phase difference.

For the most part, the controllability result is consistent with the results shown in

Figure 4.8. However, controllability only applies to linear systems and this method

cannot predict the nature of the system at the internal resonances. Furthermore, the

friction force is not fully variable, but must follow the Stribeck relation given in (4.1).

Only a full simulation of the nonlinear system can reveal the entire story. The next

section describes the sensitivity of the nonlinearities to the tuning frequency and friction

law.

4.4 Sensitivity of the Beam-Mass System

The previous section shows that energy dissipation is poor when the tuning

frequency is near the beam frequencies and the best energy dissipation occurs when the

beam and mass systems are mistuned. This behavior stands in contrast with that of the

3DOF system in Chapter 3. In Chapter 3, the best energy dissipation occurred when one

of the subsystems was tuned to the natural frequency of another subsystem (or a

harmonic thereof). This difference of results illustrates an important point - that the

behavior of frictional systems is highly sensitive, and that results vary considerably

depending on the system model. Therefore, this section explores the sensitivity of the

energy dissipation results to the tuning parameter and the nature of the friction law.
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4.4.1 Sensitivity to Tuning Parameter

To analyze the sensitivity of the energy results, a slice of the mesh in Figure 4.8

was examined. This slice, shown in Figure 4.10, is the total system energy remaining

after 4.6 s of free response for a constant normal force of 10 N. The point of least energy

remaining (or most energy dissipated) appears to be to the right of the zero at 60.3 rad/s.

Displayed on a semi-log scale, Figure 4.10 appears very noisy, especially at low energy

levels. To determine whether this feature was an artifact of the simulation method or an

actual characteristic of the system, the time histories at different tuning ratios were

examined.
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Figure 4.10. Total system energy as a function of tuning frequency for N= 10 N.
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The time histories of two adjacent points at tuning frequencies of 49.0 and 49.5

rad/s were studied. These points were selected because there is a relatively large

difference in energy between them (see Figure 4.10). Figure 4.11 shows the time

histories of the relative displacements between the end of the beam (x = L) and the

attached mass for the two tuning frequencies. From this plot, it is evident that a

noticeable difference in the time response of the system exists despite the fact that only

one system parameter was varied slightly. The difference between a system with a tuning

frequency of 49.0 rad/s versus 49.5 rad/s is a 2% increase in the spring stiffness, k2.

Figure 4.11 also shows why there is more energy remaining at 49.5 rad/s than at 49.0

rad/s. For a tuning frequency of 49.5 rad/s, the relative displacement is constant beyond t

= 1.5 s, indicating that the friction interface becomes stuck. However, when the tuning

parameter is set to 49.0 rad/s, the friction interface goes through another half-cycle of

stick-slip before becoming completely stuck, thereby dissipating more energy.
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Figure 4.11. Relative displacement versus time for two tuning frequencies.

4.4.2 Sensitivity to Friction Laws

Although the Stribeck friction model is used in this case, it is instructive to see

how the system behavior changes with differences in the friction law characteristics. The

cases that were evaluated were an equivalent viscous damper and a frictional interface

with a simple Coulomb friction law. The friction force for the Coulomb law is exactly as

is given by (4.1), except that the coefficient of friction is constant with slip velocity. For

this analysis, the friction coefficient of the Coulomb model is equal to the dynamic

friction coefficient of the Stribeck law. These cases were chosen because they represent

more simple models of a frictional interface.

The value of the equivalent viscous damper can be derived from expressions of

energy dissipated over one cycle of motion [21]. The purpose is to identify a viscous
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damping constant that approximates the energy loss per cycle by a friction damper.

Assuming harmonic motion, the energy dissipated by the viscous damper is equated to

the energy dissipated by a friction damper over one period. The energy dissipated by a

viscous damper, (Edi•),i, over one cycle of oscillation is given by

(2?r/w)

(EdS)Vs = fCeqLP2dt (4.32)
0

where Ceq is the damper constant, co is the frequency of oscillation, and y is the assumed

harmonic displacement with amplitude Y and frequency co. Therefore, the time derivative

ofy is

= Ytocos(eot). (4.33)

Substituting (4.33) into (4.32) and integrating results in

(21rlw)

(Eds)VCs = Ceqy 2 O 2 Jcos2(COt)dt = Ceq y 2 a)n. (4.34)
0

The energy dissipated over one cycle by a friction damper can be shown to be

(Eds)fric = 4Y/uV, (4.35)

therefore, equating (4.35) and (4.36) and solving for Ceq results in

Ceq = 41 N (4.36)

From (4.36), the damping constant is a function of the frequency and amplitude of

motion. In this case, the viscous damper was chosen to approximate the damping done

by the friction damper when the tuning frequency is at 13.7 rad/s. The friction coefficient

used was the dynamic coefficient.

The system energies remaining after 4.6 s of free response are compared in Figure

4.12 for the viscous damping, Coulomb, and Stribeck cases. From this plot, two
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differences between the viscous and the friction dampers are apparent. First, the peaks

corresponding to excitation of the beam modes are much more narrow for the viscous

damper case than the friction cases. The broad peaks in the friction cases are due to the

saturation-like feature discussed in Section 4.2.2. Secondly, unlike the friction dampers,

the system with the viscous damper shows no pronounced minimum near a tuning

parameter of 60.0 rad/s.
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Figure 4.12. Total energy remaining after 4.6s versus tuning frequency for different
friction laws.

The differences between the dry friction laws are more subtle. In the vicinity of

the peaks, the two friction laws agree well. However, as the energy decreases, the

Stribeck case fluctuates much more than the Coulomb case. This lack of fluctuations in

the Coulomb case is due to the constant friction coefficient, which allows for sticking to
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take place more consistently as the tuning parameter is varied. In the Stribeck case, the

friction coefficient changes rapidly when the velocity is small, therefore, the point when

the friction interface sticks is more sensitive to changes in the system. Furthermore, since

the friction coefficient for the Coulomb case is the dynamic coefficient (which is smaller

than the static coefficient), more sliding is allowed, thus more energy is dissipated.

Lastly, the Stribeck case picks up the effects of the internal resonance at 28.6 rad/s, as

seen by a spike at this frequency in Figure 4.12. However, any indication that an internal

resonance is present in the Coulomb case is negligible.

As the results show, the behavior of the beam-mass system varies greatly with

system parameters. In particular, the complexity of the frictional interface significantly

affects the dissipated energy. For some applications, using a viscous damper to

approximate a frictional interface may be appropriate. However, accurate simulations of

precision space structures (as discussed in Chapter 1) require greater modeling detail.

The Stribeck model revealed dynamics and mechanisms of energy transfer that the other

methods did not exhibit. Certainly, the Stribeck model is not the best friction model by

any means. The purpose of this study was not to show that the Stribeck case is better

than the others, but to show the importance of selecting an appropriate friction law to

model a given system.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

The purpose of this thesis is to explore two aspects of modeling the behavior of

joint friction in structures. The first aspect deals with the accurate and efficient

simulation of a simple system that incorporates an advanced friction law. Energy transfer

and dissipation in a structural joint model is the second topic of this thesis. Motivation

for this study stems from the need to have accurate models of high-precision space

structures. Because friction at connecting joints plays a major role in the dynamics of the

structure, a good understanding of this mechanism is necessary to predict the vibratory

response of the structure.

5.1 Summary

The nature of the friction law can have a significant impact on the behavior of a

jointed structure. Good friction models are desirable to predict the dynamic response of a

structure, and a wide variety of friction laws have been proposed to date. However, it is

well known that frictional systems are numerically difficult to simulate. Chapter 2

addresses these issues by simulating a simple system with a frictional interface modeled

using the LuGre friction law. The LuGre friction law is chosen because it incorporates

many characteristics of other friction models. The main purpose of Chapter 2 is to

analyze the dynamics of the frictional system and to determine the best and most efficient

numerical method to simulate the system.
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To analyze the behavior of the frictional system, a SDOF spring-mass system

sliding against a fixed surface was considered. The equations of motion for this system

were converted to a nondimensional form for convenience as well as to prevent round-off

errors in the calculations. The spring-mass system was analyzed by observing the

linearized dynamics of the entire system as well as the time constant of the LuGre model

alone. The analysis showed that the friction dynamics can be very fast and therefore

numerically stiff during periods of high slip velocity. Furthermore, the dynamics

changed rapidly at stick-slip transitions. It was found that the system dynamics were

relatively well-conditioned during periods of sticking, which stood in contrast to the

standard behavior of other friction models.

To determine the best and most efficient simulation method for the SDOF system,

explicit and implicit time integration methods were considered. In general, the explicit

methods required smaller time steps than the implicit methods. Consequently, this

requirement led to longer simulation times as well as a larger number of integration steps.

However, the explicit methods performed better in terms of accuracy. Attempts to reduce

the simulation time by varying the time steps performed poorly for both explicit and

implicit methods. This poor performance was attributed to a slight time shift in the

solution, which caused relatively large errors. The best simulation methods were found

to be the explicit Runge-Kutta and implicit Radau-IIA methods with constant time steps

of 10-3 and 10-2, respectively. Determining which is the best method depended on one's

need for better accuracy (Runge-Kutta) or reduced memory usage (Radau-IIA).

However, when simulating a large dynamical system, using a larger time step would

greatly reduce the computation time. This advantage outweighs improved accuracy
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afforded by the Runge-Kutta method. Therefore, for large systems with LuGre friction,

the Radau-IIA method is determined to be the best method for numerical integration.

Chapters 3 and 4 are concerned with the second topic of this thesis. This topic

deals with the concepts of energy pumping and energy dissipation in a jointed structure.

The hypothesis is that joint friction can be a means to pump low-frequency vibrational

energy to high-frequency vibrational energy, through the action of stick-slip oscillations.

Since energy can be dissipated faster at higher frequencies, this pumping of energy to

excite higher resonances may serve as a tool for increased energy dissipation.

In Chapter 3, a discrete 3DOF system was used to model a jointed structure. To

isolate the mechanism that caused stick-slip motion, the frictional interface was modeled

using the Stribeck friction model. From numerical simulations of the steady-state forced

and free responses, several aspects of the system were observed. In the case of harmonic

excitation, the frictional interface produced a stick-slip response that excited internal

resonances at odd harmonics of the driving frequency. Second, there was a one-way

transfer of energy from one subsystem to the other. Finally, by studying the energies in

the 3DOF system, it was shown that, depending on the tuning ratio, friction could pump

energy from one frequency to higher frequencies. When the 3 rd subsystem was tuned to

be receptive to these higher frequencies, there was an increase in energy dissipation

versus the case where friction was not present. This increase in energy dissipation could

lead to an improved damping capacity of the overall system.

The investigation in Chapter 3 was admittedly simple in order to permit a more

thorough understanding of the phenomenon. The subsystems were SDOF spring-mass-

damper systems and the friction model was of the Stribeck type. In Chapter 4, the
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concepts learned in Chapter 3 are applied to a more complicated, and realistic, jointed

system. This model incorporates a continuous beam and a floating joint configuration.

Furthermore, the multi-mode nature of the beam gives rise to more interesting dynamics.

The analyses done to the beam-mass system of Chapter 4 paralleled that of

Chapter 3. The frequency response of the beam-mass system showed the presence of

internal resonances. These resonances corresponded to the odd harmonics of the drive

frequency coinciding with various modes of the beam. Similar to the energy study in

Chapter 3, the energy dissipation of the beam-mass system was evaluated during the free

response of the system. However, the result from this simulation was opposite of the

results from Chapter 3. In this case, there was poor energy dissipation when the mass

subsystem was tuned to the resonances of the beam. Even at the internal resonances,

where energy was pumped to the higher modes of the beam, there was worse energy

dissipation than when the system was completely mistuned. These surprising results

were attributed to the fact that friction was much more efficient in dissipating energy than

the modal damping in the beam. The results were also partially confirmed by looking at

the controllability of the linear state-space system.

The difference in results between Chapters 3 and 4 demonstrates that the behavior

of frictional systems is very sensitive to system parameters and to structural

configuration. The last part of Chapter 4 shows that the energy dissipation of the system

is sensitive to slight changes in the tuning parameter. Furthermore, the response of the

system using the Stribeck model reveals many features that other, simpler friction models

do not.
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5.2 Conclusions and Future Work

Although this thesis is a preliminary study of the behavior of joint friction, it can

provide a framework to accurately model and design jointed structures. For example,

Chapter 2 presents an analysis of the numerical issues associated with the simulation of a

frictional system. Results from this chapter could be useful in simulating a large

structural system, especially if the system employs the LuGre friction model.

In Chapters 3 and 4, the models of the jointed structure are general and not

specific to any joint geometry. In essence, they represent two structures connected by a

frictional interface. This generalization could apply to different joint geometries such as

sleeve or revolute joints. Results from Chapters 3 and 4 could lead to design guidelines

to enhance energy dissipation in the system. For example, it is shown that friction indeed

pumps energy to higher modes. Structural designers should take advantage of this

phenomenon whenever possible in order to maximize the passive damping capacity of a

system. However, difference in results between Chapters 3 and 4 demonstrates that

frictional systems are sensitive to parameter changes, and that design rules will often be

application-specific. Lastly, the sensitivity of observed results to friction laws and

system tuning reinforces the need to model a system with the appropriate level of detail.

In reality, however, the behavior of a jointed structural system is a large puzzle

with many pieces. Many variables and nonlinearities contribute to the actual behavior of

such a system. The results of this thesis provide a clue to one of those puzzle pieces.

A natural extension of this thesis is to apply the LuGre friction model to the joint

models in Chapters 3 and 4, as well as more complicated structural systems.

Furthermore, future studies could employ more complicated friction models as well as
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attempt to quantify the contribution of joint friction to the damping of a structural system.

Finally, it is important to experimentally study and validate the simulated behavior found

in this study. Ultimately, observations of space-deployed structures are needed to

confirm the predictions of numerical simulations.
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